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Анотацiя

Коваль С.Д., Точковi й узагальненi симетрiї рiвняння тепло-

провiдностi, Квалiфiкацiйна дипломна робота на здобуття освiтнього

ступеня «магiстр» за спецiальнiстю 111 Математика, Київський акаде-

мiчний унiверситет, Київ, 2023, 51 с., 44 джерела.

Основою квалiфiкацiйної роботи є стаття [J. Math. Anal. Appl., 2023,

doi:10.1016/j.jmaa.2023.127430]. У роботi отримано зручне представлення

для точкових перетворень симетрiї (1+1)-вимiрного лiнiйного рiвняння

теплопровiдностi та коректно їх iнтерпретовано. Це дозволяє довести,

що псевдогрупа утворена цими перетвореннями має рiвно двi компонен-

ти зв’язностi. Тобто, рiвняння теплопровiдностi допускає єдину незале-

жну дискретну симетрiю, в якостi якої може бути обрана замiна знаку

залежної змiнної. Введено поняття псевдодискретних елементiв групи

Лi й показано, що замiна знаку просторової змiнної, яка довгий час не-

правильно iнтерпретувалась як дискретна симетрiя рiвняння теплопро-

вiдностi, є псевдодискретним елементом суттєвої групи точкових симе-

трiй. Також покращено класифiкацiя пiдалгебр суттєвої алгебри iнварi-

антностi рiвняння теплопроводностi, i також знайдено явну форму для

всiх узагальнених симетрiй цього рiвняння. У роботi також розглянуто

рiвняння Бюргерса через його зв’язок iз рiвнянням теплопровiдностi i

доведено, що воно не допускає дискретних точкових симетрiй. Розвине-

ний пiдхiд до груп точкових перетворень симетрiї елементи якого мають

компоненти, якi є дробово-лiнiйними функцiями за деякими змiнними,

можна безпосередньо поширити на багато iнших лiнiйних i нелiнiйних

диференцiальних рiвнянь.

MSC: 35K05, 35B06, 35A30

Ключовi слова: рiвняння теплопровiдностi; псевдогрупа точкових си-

метрiй; Лiївськi симетрiї; дискретнi симетрiї; класифiкацiя пiдалгебр;

узагальненi симетрiї.
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Abstract

Koval S.D., Point and generalized symmetries of the heat equation,

Master Thesis, major 111 Mathematics. – Kyiv Academic University, Kyiv,

2023, 51 pages, 44 references.

The thesis is based on the paper [J. Math. Anal. Appl., 2023,

doi:10.1016/j.jmaa.2023.127430]. We derive a nice representation for point

symmetry transformations of the (1+1)-dimensional linear heat equation

and properly interpret them. This allows us to prove that the pseudogroup

of these transformations has exactly two connected components. That is,

the heat equation admits a single independent discrete symmetry, which

can be chosen to be alternating the sign of the dependent variable. We

introduce the notion of pseudo-discrete elements of a Lie group and show

that alternating the sign of the space variable, which was for a long time mi-

sinterpreted as a discrete symmetry of the heat equation, is in fact a pseudo-

discrete element of its essential point symmetry group. The classification of

subalgebras of the essential Lie invariance algebra of the heat equation is

enhanced and the explicit form for all the generalized symmetries of this

equation is found as well. We also consider the Burgers equation because of

its relation to the heat equation and prove that it admits no discrete poi-

nt symmetries. The developed approach to point-symmetry groups whose

elements have components that are linear fractional in some variables can di-

rectly be extended to many other linear and nonlinear differential equations.

MSC: 35K05, 35B06, 35A30

Key words: heat equation; point-symmetry pseudogroup; Lie symmetry;

discrete symmetry; subalgebra classification; generalized symmetry
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Перелiк умовних позначень

𝐺 група точкових симетрiй; група Лi

𝐺ess суттєва пiдгрупа в 𝐺

𝐺id компонента зв’язностi одиничного елемента групи 𝐺

g максимальна алгебра iнварiантностi Лi;

алгебра Лi групи Лi 𝐺

gess суттєва пiдалгебра в g

U(g) унiверсальна накриваюча алгебра алгебри Лi g

𝜕𝑥 =
𝜕
𝜕𝑥 оператор частинної похiдної вiдносно змiнної 𝑥

l ∈ r напiвпряма сума пiдалгебри l алгебри Лi g

з iдеалом r в g

𝐻 ⋉𝑁 напiвпрямий добуток пiдгрупи 𝐻 групи 𝐺

з нормальною пiдгрупою 𝑁 в 𝐺

SL(2,R) дiйсна спецiальна лiнiйна група рангу 2

H(1,R) дiйсна група Гейзенберга рангу 1

𝜚𝑛 незвiдне зображення групи SL(2,R) у просторi R𝑛+1

sl(2,R) алгебра Лi групи SL(2,R)
h(1,R) алгебра Лi групи H(1,R)
𝜌𝑛 незвiдне зображення алгебри sl(2,R) у просторi R𝑛+1

Σ алгебра узагальнених симетрiй

Λ алгебра лiнiйних узагальнених симетрiй
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Introduction

The (1+1)-dimensional (linear) heat equation

𝑢𝑡 = 𝑢𝑥𝑥 (1)

is one of the simplest but most fundamental equations of mathematical physi-

cs. This equation became a test example in a number of branches within the

theory of differential equations, including symmetry analysis of such equati-

ons. Studying symmetries and related objects of the equation (1) was ini-

tiated by Sophus Lie himself [23] in the course of group classification of

second-order linear partial differential equations in two independent vari-

ables. In particular, he computed its maximal Lie invariance algebra and

showed that it gives a unique (modulo the point equivalence) maximal Lie-

symmetry extension in the class of linear (1+1)-dimensional second-order

evolution equations. In the present, the heat equation is the first standard

equation for testing packages for symbolic computation of symmetries of vari-

ous kinds and related objects for differential equations. It was the equation (1)

that was used as the only example for introducing the concept of nonclassi-

cal reduction in [8]. Such reductions of (1) were first completely described

only in [13] (see also [42] for a preliminary study), and this result origi-

nated studying singular reduction modules and no-go problems on nonclassi-

cal reductions for general partial differential equations [10, 22, 33, 34, 44].

The space of local conservation laws of the equation (1) is known for a

long time [11]; more specifically, the space of its reduced conservation-law

characteristics coincides with the solution space of the backward heat equati-

on. The theorem [36, Theorem 8] that any potential conservation law of the

equation (1) is equivalent, on the solution set of the corresponding potential

system, to a local conservation law of this equation was generalized in [37]

to an arbitrary linear (1+1)-dimensional second-order evolution equation.



9

Therein, potential symmetries of such equations, including equations (1),

and Darboux transformations between them were comprehensively studied

following [24]. To gain an impression of the state of the art in symmetry

analysis of the equation (1), see, e.g., Examples 2.41, 3.3, 3.13, 3.17 and 5.21

in [26], [6, Section 10.1], [13, 28,37], [41, Section A] and [43, p. 531–535].

In spite of the rich and diverse history of studying the equation (1),

a number of basic problems related to it even within the framework of classi-

cal group analysis still require refinement. Thus, a neat description of the

point symmetry pseudogroup 𝐺 of this equation and an accurate classifi-

cation of subalgebras of its essential Lie invariance algebra gess has not yet

been presented in the literature. Improper interpretations of continuous and

discrete symmetries of the equation (1) led to the inconsistency between

the action of the essential point symmetry group 𝐺ess on gess and the inner

automorphism group of gess. In the present work, we successfully solve the

above problems using an approach from [17] for enhancing the representati-

on of point symmetries of the equation (1) given in the proof of Theorem 8

in [28]. After achieving the consistency between the action of 𝐺ess on gess

and the inner automorphism group of gess, we first construct an accurate

optimal list of subalgebras of gess and an optimal list of one-dimensional

subalgebras of g. We also introduce the notion of pseudo-discrete elements

of a Lie group. It turns out that the point transformation only alternating

the sign of the space variable 𝑥, which was incorrectly assumed to be a di-

screte point symmetry transformation of the equation (1), is in fact a pseudo-

discrete element of 𝐺ess.

It is surprising that the explicit description of generalized symmetri-

es of the equation (1) has not been presented in the literature although

it can be straightforwardly derived from well-known particular results on

these symmetries from, e.g., [26, Example 5.21] and [9, Section 4.4.2]. At

the same time, this description can also be easily obtained from the very

beginning using the Shapovalov–Shirokov theorem [39, Theorem 4.1]. The
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algebra Σ of generalized symmetries of the equation (1) is the semidirect

sum of the subalgebra Λ of linear generalized symmetries of (1) and the

ideal Σ−∞ associated with the linear superposition of solutions of (1), and

we prove that the subalgebra Λ is generated from the simplest symmetry

𝑢𝜕𝑢 by two recursion operators, which are associated with Lie symmetri-

es of space translations and Galilean boosts. Hence this subalgebra is

isomorphic to the universal enveloping algebra of the rank-one real Hei-

senberg algebra.

Since the Burgers equation is related to the equation (1) via linearizing by

the Hopf–Cole transformation and the 𝑡-components of its point symmetry

transformations are linear fractional in 𝑡, in Section 3 we extend the suggested

approach to the Burgers equation. We enhance the representation for its

point symmetries given in [31,32], properly interpret them and show that the

Burgers equation admits no discrete point symmetries, whereas alternating

the sign of the space variable is its pseudo-discrete point symmetry.

The projections of the point-symmetry (pseudo)groups of many linear

and nonlinear systems of differential equations, including multi-dimensional

ones, to subspaces coordinatized by certain system variables consist of linear

fractional transformations, see the beginning of Section 3. The consideration

of the remarkable (1+2)-dimensional Fokker–Planck equation (also known as

the Kolmogorov equation) 𝑢𝑡+𝑥𝑢𝑦 = 𝑢𝑥𝑥 in [17] and of the heat and Burgers

equations in the present thesis clearly shows that the developed approach to

interpreting transformations with linear fractional components can directly

be extended to all such systems.

The structure of the thesis is as follows. In Chapter 1, we study the point

symmetries of the heat equation, in particular, in Section 1.1, we present

the maximal Lie invariance algebra of the equation (1) and describe its key

properties. Using the direct method, in Section 1.2 we re-compute the point

symmetry pseudogroup of this equation and analyze its structure, including

its decomposition and the description of its discrete elements. Section 1.3
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is devoted to the classifications of subalgebras of gess of all possible di-

mensions up to the 𝐺ess-equivalence and of one-dimensional subalgebras of g

modulo the 𝐺-equivalence. In Section 1.4, we solve a problem of characteri-

zing elements of 𝐺ess belonging to exp(gess). We also introduce the notion of

pseudo-discrete element of a Lie group and show that the point transformati-

on only alternating the sign of 𝑥 is a pseudo-discrete element of 𝐺ess. The

description of generalized symmetries of the equation (1) is essentially refi-

ned and completed in Chapter 2. The developed approach to point symmetry

(pseudo)groups with linear fractional transformation components is applied

to the Burgers equation in Chapter 3. The results of the paper are analyzed

in Section 3.

The basic theory of symmetries of differential equations and related to

them objects can be found in [21,26].

The thesis based on the papers published in [17, 19]. The results of the

thesis were discussed at the seminar of the Department of mathematical

Physics at the Institute of Mathematics of National Academy of Science

of Ukraine, Geometry and Differential equations seminar at the Institute

of Mathematics of Polish Academy of Science and at the graduate seminar

at the Department of Mathematics of Kyiv Academic University. Also, the

results of the thesis were presented at the international conference Symmetry,

Invariants, and their Applications: A Celebration of Peter Olver’s 70th Bi-

rthday, organised by Dalhousie University, Halifax, Nova Scotia, Canada, at

the international workshop in honour of Wilhelm Fushchych “Symmetry and

Integrability of Equations of Mathematical Physics” [18] organized by the

Deprtment of Mathematicl Physics of the Institute of Mathematics of Nati-

onal Academy of Sciences of Ukraine December 23–24, 2022, Kyiv, Ukraine,

and at the International Conference of Young Mathematician [20], June 1–3,

2023, held by Institute of Mathematics of National Academy of Sciences of

Ukraine, Kyiv, Ukraine.
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Chapter 1

Point symmetries of the heat equation

1.1. Lie invariance algebra

The maximal Lie invariance algebra g of the equation (1) is spanned by

the vector fields

𝒫 𝑡 = 𝜕𝑡, 𝒟 = 2𝑡𝜕𝑡 + 𝑥𝜕𝑥 − 1
2𝑢𝜕𝑢, 𝒦 = 𝑡2𝜕𝑡 + 𝑡𝑥𝜕𝑥 − 1

4(𝑥
2+ 2𝑡)𝑢𝜕𝑢,

𝒢𝑥 = 𝑡𝜕𝑥 − 1
2𝑥𝑢𝜕𝑢, 𝒫𝑥 = 𝜕𝑥, ℐ = 𝑢𝜕𝑢, 𝒵(𝑓) = 𝑓(𝑡, 𝑥)𝜕𝑢,

where the parameter function 𝑓 depends on (𝑡, 𝑥) and runs through the

solution set of the equation (1). The contact invariance algebra gc of the

equation (1) is just the first prolongation of the algebra g, gc = g(1).

The vector fields 𝒵(𝑓) constitute the infinite-dimensional abelian ideal

glin of g associated with the linear superposition of solutions of (1), glin :=

{𝒵(𝑓)}. Thus, the algebra g can be represented as a semidirect sum, g =

gess ∈ glin, where

gess = ⟨𝒫 𝑡,𝒟,𝒦,𝒢𝑥,𝒫𝑥, ℐ⟩ (1.1)

is a (six-dimensional) subalgebra of g, called the essential Lie invariance

algebra of (1).

Up to the antisymmetry of the Lie bracket, the nonzero commutation

relations between the basis elements of gess are exhausted by

[𝒟,𝒫 𝑡] = −2𝒫 𝑡, [𝒟,𝒦] = 2𝒦, [𝒫 𝑡,𝒦] = 𝒟,
[𝒫 𝑡,𝒢𝑥] = 𝒫𝑥, [𝒟,𝒢𝑥] = 𝒢𝑥, [𝒟,𝒫𝑥] = −𝒫𝑥, [𝒦,𝒫𝑥] = −𝒢𝑥,
[𝒢𝑥,𝒫𝑥] = 1

2ℐ.
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The algebra gess is nonsolvable. Its Levi decomposition is given by gess =

f ∈ r, where the radical r of gess coincides with the nilradical of gess and is

spanned by the vector fields 𝒢𝑥, 𝒫𝑥 and ℐ. The Levi factor f = ⟨𝒫 𝑡,𝒟,𝒦⟩
of gess is isomorphic to sl(2,R), the radical r of gess is isomorphic to the

(real) rank-one Heisenberg algebra h(1,R), and the real representation of

the Levi factor f on the radical r coincides, in the basis (𝒢𝑥,𝒫𝑥, ℐ), with
the representation 𝜌1 ⊕ 𝜌0 of sl(2,R). Here 𝜌𝑛 is the standard irreducible

representation of sl(2,R) on R𝑛+1. More specifically, 𝜌𝑛(𝒫 𝑡)𝑖𝑗 = (𝑛−𝑗)𝛿𝑖,𝑗+1,

𝜌𝑛(𝒟)𝑖𝑗 = (𝑛−2𝑗)𝛿𝑖𝑗, 𝜌𝑛(−𝒦)𝑖𝑗 = 𝑗𝛿𝑖+1,𝑗, where 𝑖, 𝑗 ∈ {0, . . . , 𝑛}, 𝑛 ∈ N0 :=

N ∪ {0}, and 𝛿𝑘𝑙 is the Kronecker delta, i.e., 𝛿𝑘𝑙 = 1 if 𝑘 = 𝑙 and 𝛿𝑘𝑙 = 0

otherwise, 𝑘, 𝑙 ∈ N0. Thus, the entire algebra gess is isomorphic to the so-

called special Galilei algebra sl(2,R)∈𝜌1⊕𝜌0 h(1,R), which is denoted by 𝐿6,2

in the classification of indecomposable Lie algebras of dimensions up to eight

with nontrivial Levi decompositions from [40].

The radical r and its derived algebra r′ := [r, r] = ⟨ℐ⟩, which coincides

with the center z(gess) of gess, are the only proper megaideals and, moreover,

the only proper ideals of gess.

Another basis of gess, which stems from the Iwasawa decomposition of

SL(2,R) and is thus more convenient in many aspects, is (𝒬+,𝒟,𝒫 𝑡,𝒢𝑥,
𝒫𝑥, ℐ), where 𝒬± := 𝒫 𝑡 ±𝒦.

1.2. Complete point symmetry pseudogroup

The equation (1) belongs to the class ℰ of linear (1+1)-dimensional

second-order evolution equations of the general form

𝑢𝑡 = 𝐴(𝑡, 𝑥)𝑢𝑥𝑥 +𝐵(𝑡, 𝑥)𝑢𝑥 + 𝐶(𝑡, 𝑥)𝑢+𝐷(𝑡, 𝑥) with 𝐴 ̸= 0. (1.2)

Here the tuple of arbitrary elements of ℰ is 𝜃 := (𝐴,𝐵,𝐶,𝐷) ∈ 𝒮ℰ , and 𝑆ℰ

is the solution set of the auxiliary system consisting of the single inequality

𝐴 ̸= 0 and the equations meaning that the arbitrary elements depend at
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most on (𝑡, 𝑥), 𝐴𝑢 = 𝐴𝑢𝑥 = 𝐴𝑢𝑡 = 𝐴𝑢𝑡𝑡 = 𝐴𝑢𝑡𝑥 = 𝐴𝑢𝑥𝑥 = 0 and similar

equations for 𝐵, 𝐶 and 𝐷.

To find the point symmetry pseudogroup 𝐺 of the equation (1), we start

with considering the equivalence groupoid of the class ℰ , which in its turn

is a natural choice for a (normalized) superclass for the equation (1). We

use the papers [28, 37] as reference points for known results on admissible

transformations of the class ℰ . For definitions and properties of structures

constituted by point transformations within classes of differential equations

see [2–5].

Proposition 1.1 ( [37]). The class ℰ is normalized in the usual sense. Its

usual equivalence pseudogroup 𝐺∼
ℰ consists of the transformations of the form

𝑡 = 𝑇 (𝑡), �̃� = 𝑋(𝑡, 𝑥), �̃� = 𝑈 1(𝑡, 𝑥)𝑢+ 𝑈 0(𝑡, 𝑥), (1.3а)

𝐴 =
𝑋2
𝑥

𝑇𝑡
𝐴, �̃� =

𝑋𝑥

𝑇𝑡

(︂
𝐵 − 2

𝑈 1
𝑥

𝑈 1
𝐴

)︂
− 𝑋𝑡 −𝑋𝑥𝑥𝐴

𝑇𝑡
, (1.3б)

𝐶 = −𝑈
1

𝑇𝑡
E

1

𝑈 1
, (1.3в)

�̃� =
𝑈 1

𝑇𝑡

(︂
𝐷 + E

𝑈 0

𝑈 1

)︂
, (1.3г)

where 𝑇 , 𝑋, 𝑈 0 and 𝑈 1 are arbitrary smooth functions of their arguments

with 𝑇𝑡𝑋𝑥𝑈
1 ̸= 0, and E := 𝜕𝑡 − 𝐴𝜕𝑥𝑥 −𝐵𝜕𝑥 − 𝐶.

The normalization of the class ℰ means that its equivalence groupoid

coincides with the action groupoid of the pseudogroup 𝐺∼
ℰ .

Теорема 1.2. The point symmetry pseudogroup 𝐺 of the (1+1)-dimensional

linear heat equation (1) is constituted by the point transformations of the

form

𝑡 =
𝛼𝑡+ 𝛽

𝛾𝑡+ 𝛿
, �̃� =

𝑥+ 𝜆1𝑡+ 𝜆0
𝛾𝑡+ 𝛿

,

�̃� = 𝜎
√︀

|𝛾𝑡+ 𝛿| exp
(︂
𝛾(𝑥+ 𝜆1𝑡+ 𝜆0)

2

4(𝛾𝑡+ 𝛿)
− 𝜆1

2
𝑥− 𝜆21

4
𝑡

)︂(︀
𝑢+ ℎ(𝑡, 𝑥)

)︀
,

(1.4)

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜆1, 𝜆0 and 𝜎 are arbitrary constants with 𝛼𝛿−𝛽𝛾 = 1 and

𝜎 ̸= 0, and ℎ is an arbitrary solution of (1).
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Proof. The linear heat equation (1) corresponds to the value (1, 0, 0, 0) =: 𝜃0

of the arbitrary-element tuple 𝜃 = (𝐴,𝐵,𝐶,𝐷) of class ℰ . Its vertex group

𝒢𝜃0 := 𝒢∼
ℰ (𝜃

0, 𝜃0) is the set of admissible transformations of the class ℰ
with 𝜃0 as both their source and target, 𝒢𝜃0 = {(𝜃0,Φ, 𝜃0) | Φ ∈ 𝐺}. This
argument allows us to use Proposition 1.1 in the course of computing the

pseudogroup 𝐺.

We should integrate the equations (1.3), where both the source value 𝜃

of the arbitrary-element tuple and its target value 𝜃 coincide with 𝜃0, with

respect to the parameter functions 𝑇 , 𝑋, 𝑈 1 and 𝑈 0. After a simplification,

the equations (1.3б) and (1.3в) take the form

𝑋2
𝑥 = 𝑇𝑡,

𝑈 1
𝑥

𝑈 1
= − 𝑋𝑡

2𝑋𝑥
, 0 =

𝑈 1

𝑇𝑡
E

1

𝑈 1
, (1.5)

where E := 𝜕𝑡− 𝜕𝑥𝑥. The first equation in (1.5) implies that 𝑇𝑡 > 0, and the

first two equations in (1.5) can be easily integrated to

𝑋 = 𝜀
√︀
𝑇𝑡 𝑥+𝑋0(𝑡), 𝑈1 = 𝜑(𝑡) exp

(︂
− 𝑇𝑡𝑡
8𝑇𝑡

𝑥2 − 𝜀

2

𝑋0
𝑡√
𝑇𝑡
𝑥

)︂
,

where 𝜀 takes values in {−1, 1}, and 𝜑 is a nonvanishing smooth function of 𝑡.
Substituting these expressions for𝑋 and 𝑈 1 into the third equation from (1.5)

and subsequently splitting the obtained equation with respect to powers of

𝑥, we derive three equations, 𝑇𝑡𝑡𝑡/𝑇𝑡− 3
2(𝑇𝑡𝑡/𝑇𝑡)

2 = 0, 𝑋0
𝑡𝑡𝑇𝑡−𝑋0

𝑡 𝑇𝑡𝑡 = 0 and

4𝑇𝑡𝜑𝑡+
(︀
𝑇𝑡𝑡+(𝑋0

𝑡 )
2
)︀
𝜑 = 0, respectively considering them as equations for 𝑇 ,

𝑋0 and 𝜑. The first equation means that the Schwarzian derivative of 𝑇 is

zero. Therefore, 𝑇 is a linear fractional function of 𝑡, 𝑇 = (𝛼𝑡+ 𝛽)/(𝛾𝑡+ 𝛿).

Since the constant parameters 𝛼, 𝛽, 𝛾 and 𝛿 are defined up to a constant

nonzero multiplier and 𝑇𝑡 > 0, i.e., 𝛼𝛿 − 𝛽𝛾 > 0, we can assume that

𝛼𝛿 − 𝛽𝛾 = 1. Then these parameters are still defined up to a multiplier in

{−1, 1}, and hence we can choose them in such a way that 𝜀 = sgn(𝛾𝑡+ 𝛿).

The equation for 𝑋0 simplifies to the equation (𝛾𝑡+𝛿)𝑋0
𝑡𝑡+2𝛾𝑋0

𝑡 = 0, whose

general solution is 𝑋0 = (𝜆1𝑡 + 𝜆0)/(𝛾𝑡 + 𝛿). The equation for 𝜑 takes the

form 4(𝛾𝑡+ 𝛿)2𝜑𝑡− 2𝛾(𝛾𝑡+ 𝛿)𝜑+ (𝛿𝜆1− 𝛾𝜆0)
2𝜑 = 0 and integrates, in view
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of 𝜑 ̸= 0, to 𝜑 = 𝜎
√︀

|𝛾𝑡+ 𝛿| exp
(︀
− 1

4(𝛿𝜆1 − 𝛾𝜆0)𝑋
0
)︀
with 𝜎 ∈ R ∖ {0}.

Finally, the equation (1.3г) takes the form (𝜕𝑡−𝜕𝑥𝑥)(𝑈 0/𝑈 1) = 0. Therefore,

𝑈 0 = 𝑈 1ℎ, where ℎ = ℎ(𝑡, 𝑥) is an arbitrary solution of (1).

Remark 1.3. Proposition 2 in [38] implies that the contact symmetry

pseudogroup 𝐺c of the equation (1) is the first prolongation of the group 𝐺,

𝐺c = 𝐺(1).

To avoid complicating the structure of the pseudogroup 𝐺, we should

properly interpret transformations of the form (1.4) and their composition.

Given a fixed transformation Φ of the form (1.4), it is natural to assume

that its domain domΦ coincides with the relative complement of the set

𝑀𝛾𝛿 := {(𝑡, 𝑥, 𝑢) ∈ R3 | 𝛾𝑡 + 𝛿 = 0} with respect to domℎ × R𝑢, domΦ =

(domℎ×R𝑢)∖𝑀𝛾𝛿. Here dom𝐹 denotes the domain of a function 𝐹 . Recall

that (𝛾, 𝛿) ̸= (0, 0), and note that the set 𝑀𝛾𝛿 is the hyperplane defined by

the equation 𝑡 = −𝛿/𝛾 in R3
𝑡,𝑥,𝑢 if 𝛾 ̸= 0, and 𝑀𝛾𝛿 = ∅ otherwise. Instead

of the standard transformation composition, we use a modified composition

for transformations of the form (1.4). More specifically, the domain of the

standard composition Φ1 ∘ Φ2 := Φ̃ of transformations Φ1 and Φ2 is usually

defined as the preimage of the domain of Φ1 with respect to Φ2, dom Φ̃ =

Φ−1
2 (domΦ1). For transformations Φ1 and Φ2 of the form (1.4), we have

dom Φ̃ = (dom ℎ̃× R𝑢) ∖ (𝑀𝛾2𝛿2 ∪𝑀𝛾𝛿),

where 𝛾 = 𝛾1𝛼2 + 𝛿1𝛾2, 𝛿 = 𝛾1𝛽2 + 𝛿1𝛿2, dom ℎ̃ =
(︀
(𝜋*Φ2)

−1 domℎ1
)︀
∩

domℎ2, 𝜋 is the natural projection of R3
𝑡,𝑥,𝑢 onto R2

𝑡,𝑥, and the parameters

with indices 1 and 2 and tildes correspond Φ1, Φ2 and Φ̃, respectively. As the

modified composition Φ1 ∘m Φ2 of transformations Φ1 and Φ2, we take the

continuous extension of Φ1 ∘ Φ2 to the set

domm Φ̃ := (dom ℎ̃× R𝑢) ∖𝑀𝛾𝛿,

i.e., dom(Φ1 ∘m Φ2) = domm Φ̃. In other words, we set Φ1 ∘m Φ2 to be the

transformation of the form (1.4) with the same parameters as in Φ1 ∘ Φ2
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and with the natural domain. It is obvious that we redefine Φ1 ∘ Φ2 on the

set (dom ℎ̃× R𝑢) ∩𝑀𝛾2𝛿2 if 𝛾1𝛾2 ̸= 0; otherwise domm Φ̃ = dom Φ̃ and the

extension is trivial. A disadvantage of the above interpretation is that it is

then common for elements of 𝐺 to have different signs of their Jacobians on

different connected components of their domains, but the benefits we receive

due to it are more essential.

Now we can analyze the structure of 𝐺. The point transformations of the

form

Z(𝑓) : 𝑡 = 𝑡, �̃� = 𝑥, �̃� = 𝑢+ 𝑓(𝑡, 𝑥),

where the parameter function 𝑓 = 𝑓(𝑡, 𝑥) is an arbitrary solution of the

equation (1), are associated with the linear superposition of solutions of

this equation and, thus, can be considered as trivial. They constitute the

normal pseudosubgroup 𝐺lin of the pseudogroup 𝐺. The pseudogroup 𝐺 spli-

ts over 𝐺lin, 𝐺 = 𝐺ess ⋉ 𝐺lin, where the subgroup 𝐺ess of 𝐺 consists of the

transformations of the form (1.4) with 𝑓 = 0 and thus is a six-dimensional

Lie group. We call the subgroup 𝐺ess the essential point symmetry group of

the equation (1). This subgroup itself splits over 𝑅, 𝐺ess = 𝐹 ⋉ 𝑅. Here 𝑅

and 𝐹 are the normal subgroup and the subgroup of 𝐺ess that are singled out

by the constraints 𝛼 = 𝛿 = 1, 𝛽 = 𝛾 = 0 and 𝜆1 = 𝜆0 = 0, 𝜎 = 1, respecti-

vely. They are isomorphic to the groups H(1,R)×Z2 and SL(2,R), and their
Lie algebras coincide with r ≃ h(1,R) and f ≃ sl(2,R). Here H(1,R) denotes
the rank-one real Heisenberg group. The normal subgroups 𝑅c and 𝑅d of 𝑅

that are isomorphic to H(1,R) and Z2 are constituted by the elements of 𝑅

with parameter values satisfying the constraints 𝜎 > 0 and 𝜆0 = 𝜆1 = 0,

𝜎 ∈ {−1, 1}, respectively. The isomorphisms of 𝐹 to SL(2,R) and of 𝑅c

to H(1,R) are established by the correspondences

𝜚1 = (𝛼, 𝛽, 𝛾, 𝛿)𝛼𝛿−𝛽𝛾=1 ↦→
(︃
𝛼 𝛽

𝛾 𝛿

)︃
,
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(𝜆1, 𝜆0, 𝜎), 𝜎>0 ↦→

⎛⎜⎝1 −1
2𝜆1 ln𝜎

0 1 𝜆0

0 0 1

⎞⎟⎠ .

The isomorphism 𝜚1 is in fact the standard two-dimensional representation

of SL(2,R). Thus, 𝐹 and 𝑅c are connected subgroups of 𝐺ess, but 𝑅d is not.

The natural conjugacy action of the subgroup 𝐹 on the normal subgroup 𝑅

is given, in the parameterization (1.4) of 𝐺, by (�̃�1, �̃�0, �̃�) = (𝜆1, 𝜆0, 𝜎)𝐴 with

the matrix 𝐴 = 𝜚1(𝛼, 𝛽, 𝛾, 𝛿)⊕ (1). Summing up, we have that

𝐺ess ≃
(︀
SL(2,R)⋉𝜙 H(1,R)

)︀
× Z2,

where the antihomomorphism 𝜙 : SL(2,R) → Aut(H(1,R)) is defined, in the
chosen local coordinates, by 𝜙(𝛼, 𝛽, 𝛾, 𝛿) = (𝜆1, 𝜆0, 𝜎) ↦→ (𝛼𝜆1 + 𝛾𝜆0, 𝛽𝜆1 +

𝛿𝜆0, 𝜎) = (𝜆1, 𝜆0, 𝜎)𝐴.

Transformations from the one-parameter subgroups of 𝐺ess that are

generated by the basis elements of gess given in (1.1) are of the following

form:

P𝑡(𝜖) : 𝑡 = 𝑡+ 𝜖, �̃� = 𝑥, �̃� = 𝑢,

D(𝜖) : 𝑡 = e2𝜖𝑡, �̃� = e𝜖𝑥, �̃� = e−
1
2𝜖𝑢,

K(𝜖) : 𝑡 =
𝑡

1− 𝜖𝑡
, �̃� =

𝑥

1− 𝜖𝑡
, �̃� =

√︀
|1− 𝜖𝑡|e 𝜖𝑥2

4(𝜖𝑡−1)𝑢,

G𝑥(𝜖) : 𝑡 = 𝑡, �̃� = 𝑥+ 𝜖𝑡, �̃� = e−
1
4 (𝜖

2𝑡+2𝜖𝑥)𝑢,

P𝑥(𝜖) : 𝑡 = 𝑡, �̃� = 𝑥+ 𝜖, �̃� = 𝑢,

I(𝜖) : 𝑡 = 𝑡, �̃� = 𝑥, �̃� = e𝜖𝑢,

where 𝜖 is an arbitrary constant. At the same time, using this basis of gess

in the course of studying the structure of the group 𝐺ess hides some of its

important properties and complicates its study.

Although the pushforward of the pseudogroup𝐺 by the natural projection

of R3
𝑡,𝑥,𝑢 onto R𝑡 coincides with the group of linear fractional transformations

of 𝑡 and is thus isomorphic to the group PSL(2,R), the subgroup 𝐹 of 𝐺
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is isomorphic to the group SL(2,R), and its Iwasawa decomposition is given

by the one-parameter subgroups of 𝐺 respectively generated by the vector

fields 𝒬+ := 𝒫 𝑡 + 𝒦, 𝒟 and 𝒫 𝑡. The first subgroup, which is associated

with 𝒬+, consists of the point transformations

Q+(𝜖) : 𝑡 =
sin 𝜖+ 𝑡 cos 𝜖

cos 𝜖− 𝑡 sin 𝜖
, �̃� =

𝑥

cos 𝜖− 𝑡 sin 𝜖
,

�̃� =
√︀
| cos 𝜖− 𝑡 sin 𝜖| exp

(︂ −𝑥2 sin 𝜖
4(cos 𝜖− 𝑡 sin 𝜖)

)︂
𝑢,

where 𝜖 is an arbitrary constant parameter, which is defined by the

corresponding transformation up to a summand 2𝜋𝑘, 𝑘 ∈ Z. The Jacobi-

an of Q+(𝜖) is positive and negative for all values of (𝑡, 𝑥, 𝑢) if 𝜖 = 0 and

𝜖 = 𝜋, respectively. For 𝜖 ∈ (0, 𝜋) ∪ (𝜋, 2𝜋), the transformation Q+(𝜖) is

not defined if 𝑡 = cot 𝜖, and for the other values of (𝑡, 𝑥, 𝑢) the sign of its

Jacobian coincides with sgn(cos 𝜖− 𝑡 sin 𝜖).

The equation (1) is invariant with respect to the involution J alternating

the sign of 𝑥 and the transformation K′ inverting 𝑡,

J := (𝑡, 𝑥, 𝑢) ↦→ (𝑡,−𝑥, 𝑢),

K′ : 𝑡 = −1

𝑡
, �̃� =

𝑥

𝑡
, �̃� =

√︀
|𝑡| e𝑥2

4𝑡 𝑢.
(1.6)

Note that (K′)2 = J. In the context of the one-parameter subgroups

of 𝐺ess (resp. of 𝐺) that are generated by the basis elements of gess listed

in (1.1), both the transformations J and K′ look as discrete point symmetry

transformations of (1), but in fact, this is not the case under the above

interpretation of the group multiplication in 𝐺. Even though the Jacobian

of the involution J is equal to −1 for all values of (𝑡, 𝑥, 𝑢), this involution

belongs to the one-parameter subgroup {Q+(𝜖)} of 𝐺, J = Q+(𝜋), and thus

it belongs to the identity component of the pseudogroup 𝐺. A similar claim

is true for the transformation K′ = Q+(−1
2𝜋), the sign of whose Jacobian

coincides with sgn 𝑡.

Corollary 1.4. A complete list of discrete point symmetry transformations

of the linear (1+1)-dimensional heat equation (1) that are independent up to
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combining with each other and with continuous point symmetry transformati-

ons of this equation is exhausted by the single involution I′ alternating the

sign of 𝑢,

I′ := (𝑡, 𝑥, 𝑢) ↦→ (𝑡, 𝑥,−𝑢).
Thus, the factor group of the point symmetry pseudogroup 𝐺 with respect to

its identity component 𝐺id is isomorphic to Z2.

Proof. It is obvious that the entire pseudosubgroup 𝐺lin is contained in the

connected component of the identity transformation in 𝐺. The same claim

holds for the subgroups 𝐹 and 𝑅c in view of their isomorphisms to the groups

SL(2,R) and H(1,R), respectively. Therefore, without loss of generality, a
complete list of independent discrete point symmetry transformations of (1)

can be assumed to consist of elements of the subgroup 𝑅d. Thus, the only

discrete point symmetry transformation of (1) that is independent in the

above sense is the transformation I′, and the identity component 𝐺id of 𝐺 is

constituted by transformations of the form (1.4) with 𝜎 > 0.

Corollary 1.5. The center Z(𝐺ess) of the group 𝐺ess coincides with {I(𝜖)}⊔
{I′ ∘ I(𝜖)}.

Proof. Given a group 𝐺, by Z(𝐺) we denote its center. The decompositi-

on 𝐺ess = (𝐹 ⋉ 𝑅c) × 𝑅d and the obvious inclusion 𝑅d ⊆ Z(𝐺ess) jointly

imply that Z(𝐺ess) =
(︀
Z(𝐺ess) ∩ (𝐹 ⋉ 𝑅c)

)︀
× 𝑅d. Since 𝑅c ≃ H(1,R),

we have Z(𝑅c) = {I(𝜀)}. It is easy to check that {I(𝜀)} ⊆ Z(𝐺ess), and

thus Z(𝐺ess) ∩𝑅c = {I(𝜀)}. For any element from Z(𝐺ess), its 𝐹 -component

belongs to Z(𝐹 ). Since 𝐹 ≃ SL(2,R), we have that Z(𝐹 ) = {id, J}, where id
is the identity element of 𝐺ess. However, J∘Φ /∈ Z(𝐺ess) for any Φ ∈ 𝑅c since,

e.g., J∘Φ∘P𝑥(𝜖) ̸= P𝑥(𝜖)∘J∘Φ for 𝜖 ̸= 0. Therefore, Z(𝐺ess) = Z(𝑅c)×𝑅d.

In the notation of Theorem 1.2, the most general form of the transformed

counterpart of a given solution 𝑢 = 𝑓(𝑡, 𝑥) under action of 𝐺 (resp. 𝐺id) is

�̃� =
𝜎√︀

|𝛾𝑡− 𝛼|
exp

(︂
𝛾𝑥2

4(𝛼− 𝛾𝑡)
− 𝜆1𝑥

2(𝛼− 𝛾𝑡)
+
𝜆21
4

𝛿𝑡− 𝛽

𝛼− 𝛾𝑡
+
𝜆0𝜆1
2

)︂
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× 𝑓

(︂
𝛿𝑡− 𝛽

𝛼− 𝛾𝑡
,

𝑥

𝛼− 𝛾𝑡
− 𝜆1

𝛿𝑡− 𝛽

𝛼− 𝛾𝑡
− 𝜆0

)︂
+ ℎ(𝑡, 𝑥),

where in addition 𝜎 > 0 for 𝐺id, cf., e.g., [26, p. 120].

Note that in view of Theorem 1.2, formally pulling back the function 𝑢 :=

(𝑡, 𝑥) ↦→ 𝐻(−𝑡), where𝐻(𝑡) denotes the Heaviside step function, by the point

symmetry transformation Φ := J(ln
√
4𝜋) ∘K′,

Φ: 𝑡 = −1

𝑡
, �̃� =

𝑥

𝑡
, �̃� =

√︀
4𝜋|𝑡| exp

(︂
𝑥2

4𝑡

)︂
𝑢,

we obtain the well-known fundamental solution 𝐹 of (1),

𝐹 (𝑡, 𝑥) =
𝐻(𝑡)√︀
4𝜋|𝑡|

exp

(︂
−𝑥

2

4𝑡

)︂
.

1.3. Classifications of subalgebras

In spite of the unusualness of Corollary 1.4 and the claims in the

paragraph before it, they are well consistent with the structure of the

abstract Lie group that is isomorphic to 𝐺ess and with the inner automorphi-

sm group Inn(gess) of gess. More specifically, the algebra gess is the Lie

algebra of the group 𝐺ess, and the adjoint action of 𝐺ess on gess coincides

with Inn(gess). In particular, under the suggested interpretation we have

Ad(exp(𝜖𝒬+)) = Q+(𝜖)*,

Q+(𝜖)*𝒬− = cos(2𝜖)𝒬− + sin(2𝜖)𝒟,
Q+(𝜖)*𝒟 = − sin(2𝜖)𝒬− + cos(2𝜖)𝒟,
Q+(𝜖)*𝒫𝑥 = cos(𝜖)𝒫𝑥 + sin(𝜖)𝒢𝑥,
Q+(𝜖)*𝒢𝑥 = − sin(𝜖)𝒫𝑥 + cos(𝜖)𝒢𝑥,

and the inner automorphisms associated with J = Q+(𝜋) and K′ = Q+(−1
2𝜋)

allow one to map 𝒫 𝑡−𝒢𝑥 and 𝐷− 𝜇ℐ to 𝒫 𝑡+ 𝒢𝑥 and 𝐷+ 𝜇ℐ, respectively.
Retaining these facts, we refine the classification of subalgebras of gess or,

equivalently, the special Galilei algebra

sl(2,R) ∈𝜌1⊕𝜌0 h(1,R),
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cf. [26, Example 3.13] and [43, p. 531–535]. The nonidentity pushforwards

of the basis elements of gess by the elementary transformations from 𝐺ess

discussed in Section 1.2 are, in addition to the above ones by Q+(𝜖), the

following:

P𝑡(𝜖)*𝒟 = 𝒟 − 2𝜖𝒫 𝑡,

P𝑡(𝜖)*𝒦 = 𝒦 − 𝜖𝒟 + 𝜖2𝒫 𝑡,

P𝑡(𝜖)*𝒢𝑥 = 𝒢𝑥 − 𝜖𝒫𝑥,

K(𝜖)*𝒟 = 𝒟 + 2𝜖𝒦,
K(𝜖)*𝒫 𝑡 = 𝒫 𝑡 + 𝜖𝒟 + 𝜖2𝒦,
K(𝜖)*𝒫𝑥 = 𝒫𝑥 + 𝜖𝒢𝑥,

D(𝜖)*𝒫 𝑡 = 𝑒2𝜖𝒫 𝑡,

D(𝜖)*𝒦 = 𝑒−2𝜖𝒦,
D(𝜖)*𝒢𝑥 = 𝑒−𝜖𝒢𝑥,
D(𝜖)*𝒫𝑥 = 𝑒𝜖𝒫𝑥,

G𝑥(𝜖)*𝒫 𝑡 = 𝒫 𝑡 + 𝜖𝒫𝑥 − 1
4𝜖

2ℐ,
G𝑥(𝜖)*𝒟 = 𝒟 + 𝜖𝒢𝑥,
G𝑥(𝜖)*𝒫𝑥 = 𝒫𝑥 − 1

2𝜖ℐ,

P𝑥(𝜖)*𝒟 = 𝒟 − 𝜖𝒫𝑥,

P𝑥(𝜖)*𝒦 = 𝒦 − 𝜖𝒢𝑥 − 1
4𝜖

2ℐ,
P𝑥(𝜖)*𝒢𝑥 = 𝒢𝑥 + 1

2𝜖ℐ,

J*(𝒢𝑥,𝒫𝑥) = (−𝒢𝑥,−𝒫𝑥),

K′
*(𝒫 𝑡,𝒟,𝒦,𝒢𝑥,𝒫𝑥) = (𝒦,−𝒟,𝒫 𝑡,𝒫𝑥,−𝒢𝑥).

Lemma 1.6. A complete list of inequivalent proper subalgebras of the

algebra gess is exhausted by the following subalgebras, where 𝛿 ∈ {−1, 0, 1},
𝜇 ∈ R⩾0 and 𝜈 ∈ R:

1D: s1.1 = ⟨𝒫 𝑡 + 𝒢𝑥⟩, s𝛿1.2 = ⟨𝒫 𝑡 + 𝛿ℐ⟩, s𝜇1.3 = ⟨𝒟 + 𝜇ℐ⟩,
s𝜈1.4 = ⟨𝒫 𝑡 +𝒦 + 𝜈ℐ⟩, s1.5 = ⟨𝒫𝑥⟩, s1.6 = ⟨ℐ⟩,

2D: s𝜈2.1 = ⟨𝒫 𝑡,𝒟 + 𝜈ℐ⟩, s2.2 = ⟨𝒫 𝑡 + 𝒢𝑥, ℐ⟩, s𝛿2.3 = ⟨𝒫 𝑡 + 𝛿ℐ,𝒫𝑥⟩,
s2.4 = ⟨𝒫 𝑡, ℐ⟩, s𝜈2.5 = ⟨𝒟 + 𝜈ℐ,𝒫𝑥⟩, s2.6 = ⟨𝒟, ℐ⟩,
s2.7 = ⟨𝒫 𝑡 +𝒦, ℐ⟩, s2.8 = ⟨𝒫𝑥, ℐ⟩,

3D: s3.1 = ⟨𝒫 𝑡,𝒟,𝒦⟩, s𝜈3.2 = ⟨𝒫 𝑡,𝒟 + 𝜈ℐ,𝒫𝑥⟩, s3.3 = ⟨𝒫 𝑡,𝒟, ℐ⟩,
s3.4 = ⟨𝒫 𝑡 + 𝒢𝑥,𝒫𝑥, ℐ⟩, s3.5 = ⟨𝒫 𝑡,𝒫𝑥, ℐ⟩, s3.6 = ⟨𝒟,𝒫𝑥, ℐ⟩,
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s3.7 = ⟨𝒢𝑥,𝒫𝑥, ℐ⟩,

4D: s4.1 = ⟨𝒫 𝑡,𝒟,𝒦, ℐ⟩, s4.2 = ⟨𝒫 𝑡,𝒟,𝒫𝑥, ℐ⟩, s4.3 = ⟨𝒫 𝑡,𝒢𝑥,𝒫𝑥, ℐ⟩,
s4.4 = ⟨𝒟,𝒢𝑥,𝒫𝑥, ℐ⟩, s4.5 = ⟨𝒫 𝑡 +𝒦,𝒢𝑥,𝒫𝑥, ℐ⟩,

5D: s5.1 = ⟨𝒫 𝑡,𝒟,𝒢𝑥,𝒫𝑥, ℐ⟩.

Proof. In the course of classifying 𝐺ess-inequivalent subalgebras of gess we

use its Levi decomposition, gess = f ∈ r, and the fact that f ≃ sl(2,R). The
technique for classification subalgebras of Lie algebras whose Levi factors are

isomorphic to sl(2,R) is developed in [17, Section 4] and [43] on the base

of [30]. In particular, this technique involves the fact that the subalgebras s1

and s2 of g
ess are definitely 𝐺ess-inequivalent if their projections on the Levi

factor f, which are subalgebras 𝜋fs1 and 𝜋fs2, are 𝐹 -inequivalent. Here 𝜋f

denotes the natural projection of gess on f according to the decomposition

gess = f ∔ r of gess as a vector space into the complementary subspaces f

and r. Another simplification is that an optimal list of subalgebras for sl(2,R)
is well known, and for the realization f of sl(2,R) it is constituted by the

subalgebras {0}, ⟨𝒫 𝑡⟩, ⟨𝒟⟩, ⟨𝒫 𝑡 + 𝒦⟩, ⟨𝒫 𝑡,𝒟⟩ and f itself. To distinguish

𝐺ess-inequivalent subalgebras, we can also use the obvious 𝐺ess
* -invariants

𝑛 := dim s, �̂� := dim𝜋fs, �̌� := dim s ∩ r = 𝑛 − �̂� and �̌�′ := dim s ∩ r′.

Note that dim f = 3 and dim r = 3, and hence 0 ⩽ �̂� ⩽ min(3, 𝑛) and

0 ⩽ �̌� ⩽ min(3, 𝑛).

This is why, modulo the 𝐺ess-equivalence, we split the classification of

subalgebras s of the algebra gess into cases depending on equivalence classes

of 𝜋fs as well as on the value of the 𝐺ess
* -invariants 𝑛, �̂�, �̌� and �̌�′. For each

of the cases, we fix a subalgebra in the above list of inequivalent subalgebras

of f as a canonical representative for 𝜋fs, 𝜋fs = ⟨�̂�1, . . . , �̂��̂�⟩ with

(�̂�1, . . . , �̂��̂�) ∈
{︀
(), (𝒫 𝑡), (𝒟), (𝒫 𝑡 +𝒦), (𝒫 𝑡,𝒟), (𝒫 𝑡,𝒟,𝒦)

}︀
.

Then we consider a basis of s consisting of the vector fields of the form 𝑄𝑖 =

�̂�𝑖+𝑎𝑖𝒫𝑥+ 𝑏𝑖𝒢𝑥+ 𝑐𝑖ℐ, 𝑖 = 1, . . . , 𝑛, where �̂�𝑖 = 0, 𝑖 > �̂�. We should further
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simplify the form of 𝑄𝑖 or, equivalently, set the constant parameters 𝑎𝑖, 𝑏𝑖

and 𝑐𝑖 to as simpler values as possible via linearly recombining𝑄𝑖 and pushing

gess forward by elements of 𝐺ess. For 𝑛 ⩾ 2, we should take into account the

constraints for the parameters 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 implied by the closedness of the

subalgebra s with respect to the Lie bracket of vector fields, [𝑄𝑖, 𝑄𝑗] ∈ s,

𝑖, 𝑗 ∈ {1, . . . , 𝑛}.

�̌� = 3. Thus, s ⊇ r, and we can choose (𝑄𝑛−2, 𝑄𝑛−1, 𝑄𝑛) = (𝒫𝑥,𝒢𝑥, ℐ).
Linearly combining 𝑄𝑖, 𝑖 = 1, . . . , �̂�, with 𝑄𝑛−2, 𝑄𝑛−1 and 𝑄𝑛, we set 𝑎𝑖 =

𝑏𝑖 = 𝑐𝑖 = 0, 𝑖 = 1, . . . , �̂�, which then means that 𝜋fs = s ∩ f. The span of r

and any subalgebra of f is necessarily closed with respect to the Lie bracket.

Therefore, in this case, we obtain the proper subalgebras s3.7, s4.3, s4.4, s4.5

and s5.1.

Below we assume �̌� < 3 and also use the following observation. If

�̌� = 2, then (𝑎𝑛−1, 𝑏𝑛−1) and (𝑎𝑛, 𝑏𝑛) are linearly dependent since otherwise

[𝑄𝑛−1, 𝑄𝑛] = (𝑎𝑛𝑏𝑛−1 − 𝑎𝑛−1𝑏𝑛)ℐ ∈ s and thus �̌� = 3, which contradi-

cts the supposition �̌� = 2. Linearly recombining 𝑄𝑛−1 and 𝑄𝑛, we can set

(𝑎𝑛−1, 𝑏𝑛−1) ̸= (0, 0) and 𝑄𝑛 = ℐ in this case. In general, if �̌�′ = 1, i.e., ℐ ∈ s,

then we choose 𝑄𝑛 = ℐ and set the coefficients 𝑐𝑖, 𝑖 = 1, . . . , 𝑛 − 1 to zero

by linearly combining the other basis elements with 𝑄𝑛.

𝜋fs = {0}. Hence �̂� = 0 and s ⊆ r. If (𝑎1, 𝑏1) ̸= (0, 0), then we can set

𝑏1 = 0, pushing gess forward by Q+(𝜖) with an appropriate 𝜖. Since the new

value of the parameter 𝑎1 is necessarily nonzero, we divide 𝑄1 by 𝑎1 to set

𝑎1 = 1. Then the pushforward G𝑥(2𝑐1)* allows us to set 𝑐1 = 0. Therefore,

any subalgebra of this case is 𝐺ess-equivalent to one of the subalgebras s1.5,

s1.6 and s2.8.

𝜋fs = ⟨𝒫𝑡⟩. Acting by G𝑥(−𝑎1)*, we set 𝑎1 = 0.

In the case 𝑏1 ̸= 0, we first set 𝑏1 > 0 using, if necessary, J* and then scale

𝑏1 to 1 using D(𝜖)* with an appropriate 𝜖 and scaling the entire 𝑄1. The next

reduction is to set 𝑐1 = 0 by P𝑥(−2𝑐1)*. If 𝑛 > 1, then [𝑄1, 𝑄2] = 𝑏2P
𝑥+1

2𝑎2ℐ.
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Hence we derive the subalgebras s1.1, s2.2 and s3.4 if �̌� = 0, �̌� = 1 and �̌� = 2,

respectively.

Let now 𝑏1 = 0. If simultaneously 𝑐1 ̸= 0, then we can set |𝑐1| = 1

successively acting by D(12 ln |𝑐1|)* on gess and dividing 𝑄1 by |𝑐1|. If 𝑛 > 1,

then [𝑄1, 𝑄2] = 𝑏2P
𝑥. The corresponding subalgebras for �̌� = 0, (�̌�, �̌�′) =

(1, 0), (�̌�, �̌�′) = (1, 1) and �̌� = 2 are s𝛿1.2, s
𝛿
2.3, s2.4 and s3.5. In particular,

the chain of simplifications in the case (�̌�, �̌�′) = (1, 0) is the following. Since

𝑏2 = 0 and thus 𝑎2 ̸= 0 in this case, we divide 𝑄2 by 𝑎2 and push the new 𝑄2

forward by G𝑥(2𝑐2)* to set 𝑎2 = 1 and 𝑐2 = 0, respectively. Then we re-

establish the gauges 𝑎1 = 0 and 𝑐1 ∈ {−1, 0, 1} by combining 𝑄1 with 𝑄2

and, if the new 𝑐1 is nonzero, repeating the action by D(12 ln |𝑐1|)* and the

division of 𝑄1 by |𝑐1|.
𝜋fs = ⟨𝒟⟩. Acting by P𝑥(𝑎1)* and G𝑥(−𝑏1)*, we set 𝑎1 = 𝑏1 = 0. For 𝑛 = 1,

the cases 𝑐1 > 0 and 𝑐1 < 0 are related via K′
* and multiplying 𝑄1 by −1,

which leads to the subalgebra s𝜇1.3. For 𝑛 > 1, we have [𝑄1, 𝑄2] = −𝑎2P𝑥 +
𝑏2G

𝑥 ∈ s, and thus 𝑎2𝑏2 = 0 since �̌� < 3. Moreover, if (𝑎2, 𝑏2) ̸= (0, 0),

then the coefficient 𝑐2 can be assumed to be equal to zero since there is no

summand with ℐ in [𝑄1, 𝑄2]. The case 𝑏2 ̸= 0 is mapped to the case 𝑎2 ̸= 0

by K′
*. This gives the subalgebras s

𝜈
2.5, s2.6 and s3.6.

𝜋fs = ⟨𝒫𝑡 + 𝒦⟩. First we set 𝑎1 = 𝑏1 = 0, acting by P𝑥(𝑏1)* and G𝑥(−𝑎1)*.
For 𝑛 = 1, there is no possible further simplification of s. For 𝑛 > 1, we obtain

[𝑄1, 𝑄2] = 𝑏2P
𝑥 − 𝑎2G

𝑥, which implies 𝑎2 = 𝑏2 = 0 in view of �̌� < 3. As a

result, we derive the subalgebras s𝜈1.4 and s2.7.

𝜋fs = ⟨𝒫𝑡,𝒟⟩. We reduce 𝑄2 to the form 𝑄2 = 𝒟 + 𝜈ℐ, followi-

ng the consideration in the case 𝜋fs = ⟨𝒟⟩. Consider the commutators

[𝑄1, 𝑄2] = 2𝒫 𝑡+𝑎1𝒫𝑥−𝑏1𝒢𝑥 and, if 𝑛 > 2, [𝑄1, 𝑄3] = 𝑏3𝒫𝑥+ 1
2(𝑎3𝑏1−𝑎1𝑏3)ℐ

and [𝑄2, 𝑄3] = −𝑎3𝒫𝑥 + 𝑏3𝒢𝑥. For 𝑛 = 2, it follows from the condition

[𝑄1, 𝑄2] ∈ s that 𝑎1 = 𝑏1 = 𝑐1 = 0, which gives the algebra s𝜈2.1. Let 𝑛 > 2.

The conditions [𝑄1, 𝑄3] ∈ s and �̌� < 3 jointly implies that 𝑏3 = 0. Then, the

condition [𝑄1, 𝑄2] ∈ s allows us to conclude that 𝑏1 = 0, that the coeffici-
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ent 𝑐1 can be assumed to be equal to zero since there is no summand with ℐ
in [𝑄1, 𝑄2] and that 𝑎1 = 0 if 𝑎3 = 0. For 𝑎3 ̸= 0, the condition [𝑄2, 𝑄3] ∈ s

similarly implies that the coefficient 𝑐3 can be assumed to be equal to zero,

and we set 𝑎1 = 0 and 𝑎3 = 1, linearly combining 𝑄1 and 𝑄3. Therefore, we

also obtain the subalgebras s𝜈3.2, s3.3 and s4.2.

𝜋fs = f. Hence �̂� = 3 and the algebra s is nonsolvable, i.e., it has a nonzero

Levi factor, which is necessarily a Levi factor of gess as well. According to

the Levi–Malcev theorem, we can assume modulo the 𝑅-equivalence that

(𝑄1, 𝑄2, 𝑄3) = (𝒫 𝑡,𝒟,𝒦). If 𝑛 > 3 and (𝑎4, 𝑏4) ̸= (0, 0), then [𝒫 𝑡+𝒦, 𝑄4] =

𝑏4𝒫𝑥− 𝑎4𝒢𝑥 ∈ s and [𝑄4, 𝑏4𝒫𝑥− 𝑎4𝒢𝑥] = (𝑎 2
4 + 𝑏 24 )ℐ ∈ s, which means that

𝑛 = 6 and s = gess. This is why 𝐺ess-inequivalent proper subalgebras of gess

with �̂� = 3 are exhausted by s3.1 and s4.1.

The inequivalence, to each other, of the subalgebras s1.1 and s𝛿1.2 and the

inequivalence of subalgebras within all the parameterized families that are

listed in the lemma’s statement can be checked using the direct arguments.

For other pairs of subalgebras, it suffices to compare the corresponding values

of 𝑛 := dim s, �̌� := 𝜋fs and �̌�
′ := dim s ∩ r′.

Let us show that to classify Lie reductions of the equation (1) to ordi-

nary differential equations, it in fact suffices to classify one-dimensional

subalgebras of gess rather than the entire algebra g. For this purpose, we

construct a complete list of 𝐺-inequivalent one-dimensional subalgebras of g.

Recall that the pseudogroup 𝐺 splits over its normal pseudosubgroup 𝐺lin,

𝐺 = 𝐺ess ⋉ 𝐺lin (see Section 1.2). In other words, any element Φ of 𝐺

can be uniquely decomposed as Φ = F ∘ Z(𝑓) for some F ∈ 𝐺ess and some

Z(𝑓) ∈ 𝐺lin. Accordingly, the algebra g splits over its ideal glin, g = gess∈glin.

Thus, the complete description of the adjoint action of 𝐺 on g is given by

the already described action of 𝐺ess on gess that is supplemented with the

descriptions of the adjoint actions of 𝐺lin on gess and of 𝐺ess on glin, which are

Z(𝑓)*𝑄 = 𝑄 + 𝑄[𝑓 ]𝜕𝑢 and F*𝒵(𝑓) = 𝒵(F*𝑓), whereas the adjoint action

of 𝐺lin on glin is trivial. Here 𝑄 is an arbitrary vector field from gess, 𝑄[𝑓 ] for
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a function 𝑓 of (𝑡, 𝑥) denotes the evaluation of the characteristic 𝑄[𝑢] of 𝑄

at 𝑢 = 𝑓 , and F is an arbitrary transformation from 𝐺ess.

In the course of the classification, the following lemma will be of significant

use.

Lemma 1.7. Let 𝑄 = 𝜉1𝜕𝑥1 + 𝜉2𝜕𝑥2 + 𝜂1𝑢𝜕𝑢 be a Lie-symmetry vector

field of a linear partial differential equation ℒ: 𝐿𝑢 = 0 in two independent

variables (𝑥1, 𝑥2) with a linear differential operator 𝐿, where 𝜉
1, 𝜉2 and 𝜂 are

smooth functions of (𝑥1, 𝑥2) with (𝜉1, 𝜉2) ̸= (0, 0). Suppose in addition that

the equation ℒ is not a differential consequence of the equation 𝑄[𝑢] := 𝜂1𝑢−
𝜉1𝑢𝑥1 − 𝜉2𝑢𝑥2 = 0. Then for an arbitrary solution 𝑓 of the equation ℒ,
there exists a solution ℎ of the same equation that in addition satisfies the

constraint 𝑄[ℎ] = 𝑓 .

Proof. We straighten out the vector field𝑄 to 𝜕�̃�1 by a point transformation Φ

of the form

�̃�1 = 𝑋1(𝑥1, 𝑥2), �̃�2 = 𝑋2(𝑥1, 𝑥2), �̃� = 𝑈 1(𝑥1, 𝑥2)𝑢

with (𝑋1
𝑥1
𝑋2
𝑥2
−𝑋1

𝑥2
𝑋2
𝑥1
)𝑈 1 ̸= 0. The transformation Φ preserves the linearity

and homogeneity of ℒ. This is why we can assume without loss of generality

from the very beginning that 𝑄 = 𝜕𝑥1.

The Lie invariance of ℒ with respect to this 𝑄means that, up to a nonzero

multiplier of 𝐿 that may be a function of (𝑥1, 𝑥2), the coefficients of the

operator 𝐿 do not depend on 𝑥1. We represent this operator in the form

𝐿 = �̂� ∘ 𝜕𝑥1 +𝑅, where �̂� and 𝑅 are linear differential operators with coeffi-

cients depending at most on 𝑥2, and, moreover, the operator 𝑅 contains

at most differentiations with respect to 𝑥2 and is nonzero since otherwise

the equation ℒ is a differential consequence of the equation 𝑄[𝑢] = 0. The

constraint 𝑄[ℎ] = 𝑓 takes the form ℎ𝑥1 = 𝑓 , and its general solution is

ℎ =
∫︀ 𝑥1
𝑥1,0

𝑓(𝑠, 𝑥2) d𝑠 + 𝜙(𝑥2), where 𝑥1,0 is an appropriate fixed value of 𝑥1,

and 𝜙 is an arbitrary sufficiently smooth function of 𝑥2. Substituting the

expression for ℎ into the equation ℒ and taking into account that �̂� and 𝜕𝑥1
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commute, �̂� ∘ 𝜕𝑥1 = 𝜕𝑥1 ∘ �̂�, we have

𝐿ℎ(𝑥1, 𝑥2) = �̂�𝑓(𝑥1, 𝑥2) +

∫︁ 𝑥1

𝑥1,0

𝑅𝑓(𝑠, 𝑥2) d𝑠+𝑅𝜙(𝑥2)

=

∫︁ 𝑥1

𝑥1,0

𝜕𝑠 ∘ �̂�
⃒⃒
𝑥1⇝𝑠

𝑓(𝑠, 𝑥2) d𝑠+ (�̂�𝑓)(𝑥1,0, 𝑥2)

+

∫︁ 𝑥1

𝑥1,0

𝑅𝑓(𝑠, 𝑥2) d𝑠+𝑅𝜙(𝑥2)

=

∫︁ 𝑥1

𝑥1,0

𝐿
⃒⃒
𝑥1⇝𝑠

𝑓(𝑠, 𝑥2) d𝑠+ (�̂�𝑓)(𝑥1,0, 𝑥2) +𝑅𝜙(𝑥2)

= (�̂�𝑓)(𝑥1,0, 𝑥2) +𝑅𝜙(𝑥2).

As a result, the question of the existence of ℎ reduces to solving the linear

(either ordinary differential or algebraic in the sense that is not differential)

equation 𝑅𝜙 = −(�̂�𝑓)(𝑥1,0, ·) with respect to 𝜙, whose solution definitely

exists.

Lemma 1.8. A complete list of 𝐺-inequivalent one-dimensional subalgebras

of g consists of the one-dimensional subalgebras of gess listed in Lemma 1.6

and the subalgebras of the form ⟨𝒵(𝑓)⟩, where the function 𝑓 belongs to a

fixed complete set of 𝐺ess-inequivalent nonzero solutions of the equation (1).

Proof. The classification of one-dimensional subalgebras of g is based on the

corresponding classification for gess. This is due to the fact that subalgebras

s1 and s2 of g are definitely 𝐺-inequivalent if their natural projections on

the subalgebra gess under the vector-space decomposition g = gess ∔ glin are

𝐺ess-inequivalent.

Let a (nonzero) vector field 𝑄 be a basis element of a one-dimensional

subalgebra s of g. In view of the above decomposition, we can represent 𝑄

as 𝑄 = �̂�+𝒵(𝑓) for some �̂� ∈ gess and some solution 𝑓 of the equation (1).

If �̂� /∈ ⟨ℐ⟩, then we push the vector field 𝑄 forward by the transformati-

on Z(ℎ), where ℎ = ℎ(𝑡, 𝑥) is a common solution of the equations ℎ𝑡+ℎ𝑥𝑥 = 0

and �̂�[ℎ] + 𝑓 = 0. Since the operator 𝜕𝑡 − 𝜕 2
𝑥 cannot be factorized into two
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first-order differential operators, the existence of such a solution follows from

Lemma 1.7. For nonzero �̂� ∈ ⟨ℐ⟩, we can set �̂� = ℐ by rescaling the entire 𝑄

and then applying Z(−𝑓)* to 𝑄. Therefore, 𝐺-inequivalent one-dimensional
subalgebras of g, whose projections on gess are nonzero, are exhausted by the

subalgebras s1.1–s1.6 from Lemma 1.6.

If �̂� = 0, then 𝑄 = 𝒵(𝑓) with nonzero 𝑓 . Recall that the actions of

the groups 𝐺 and 𝐺ess on the algebra glin coincide and are equivalent to the

corresponding actions on the solution set of the equation (1).

It is obvious that the subalgebras of the form ⟨𝒵(𝑓)⟩ are not appropri-
ate to be used within the framework of Lie reductions. Therefore, the 𝐺-

inequivalent reductions of the equation (1) to ordinary differential equati-

ons are exhausted by those that are associated with the one-dimensional

subalgebras s1.1–s1.5 of g
ess listed in Lemma 1.6.

We do not consider the classification of Lie reductions of the equation (1)

in the present paper since an enhanced exhaustive list of inequivalent Lie

invariant solutions of this equation was presented in [41, Section A], based

on Examples 3.3 and 3.17 in [26]. Up to combining the 𝐺ess-equivalence

and linear superposition with each other, these solutions exhaust the set

of known exact solutions of the equation (1) that have a closed form in terms

of elementary and special functions.

1.4. Pseudo-discrete symmetries

We would like to emphasize that the false “discrete transformations” J

and K′ not only just belong to the identity component 𝐺id of 𝐺 but are,

moreover, elements of the one-parameter subgroup that is generated by the

vector field 𝒬+, J = Q+(𝜋) and K′ = Q+(−1
2𝜋). At the same time, many

transformations from 𝐺id belong to no one-parameter subgroups of 𝐺 or, in

other words, 𝐺 ∖ exp(g) is a considerable part of 𝐺. To exhaustively describe
exp(g) and 𝐺 ∖ exp(g), we use the following assertions.
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Lemma 1.9. Let a Lie group 𝐺 be a semidirect product of its Lie subgroup 𝐻

acting on its normal Lie subgroup 𝑁 , 𝐻 < 𝐺, 𝑁 � 𝐺 and 𝐺 = 𝐻 ⋉ 𝑁 . If

an element 𝑔0 of 𝐺 belongs to a one-parameter subgroup of 𝐺, then the

multiplier ℎ0 ∈ 𝐻 in the decomposition 𝑔0 = ℎ0𝑛0 with 𝑛0 ∈ 𝑁 belongs to a

one-parameter subgroup of 𝐻.

Proof. Let a homomorphism 𝜒 : (R,+) → 𝐺 define a one-parameter

subgroup of 𝐺 that contains 𝑔0, i.e., 𝜒(𝜖) = 𝑔0 for some 𝜖 ∈ R, and
let 𝜓 be the homomorphism of 𝐻 into the automorphism group Aut(𝑁)

of 𝑁 defined by 𝐻 ∋ ℎ ↦→ conjℎ|𝑁 ∈ Aut(𝑁). Denote by 𝐻 ⋌𝜓 𝑁 the

external semidirect product of 𝐻 by 𝑁 relative to 𝜓. By the definition

of internal semidirect product, the map 𝑗 = (ℎ, 𝑛) ↦→ ℎ𝑛 of the product

𝐻 ⋌𝜓 𝑁 onto 𝐺 is a Lie group isomorphism, and the natural projection 𝜋1

of 𝐻 ⋌𝜓 𝑁 onto its first component 𝐻 is a Lie group homomorphism. Hence

the function �̂� := 𝜋1 ∘ 𝑗−1 ∘ 𝜒 defines a one-parameter subgroup of 𝐻, and

�̂�(𝜖) = 𝜋1 ∘ 𝑗−1 ∘ 𝜒(𝜖) = 𝜋1 ∘ 𝑗−1𝑔0 = 𝜋1(ℎ0, 𝑛0) = ℎ0.

Lemma 1.10. Up to the subgroup conjugation in 𝐹 ≃ SL(2,R) and rescaling
the group parameter 𝜖 ∈ R, one-parameter subgroups of 𝐹 ≃ SL(2,R) are
exhausted by three groups whose elements respectively are

P𝑡(𝜖) ∼
(︃
1 𝜖

0 1

)︃
, D(𝜖) ∼

(︃
e𝜖 0

0 e−𝜖

)︃
, Q+(𝜖) ∼

(︃
cos 𝜖 sin 𝜖

− sin 𝜖 cos 𝜖

)︃
.

Proof. One-parameter subgroups of a Lie group 𝐺 with Lie algebra g are

equivalent under the subgroup conjugation in 𝐺 if and only if their generators

span 𝐺-equivalent subalgebras of g. It is well known that a complete list of

inequivalent one-dimensional subalgebras of 𝐹 ≃ SL(2,R) is exhausted by

the subalgebras that are respectively spanned by the elements

𝒫 𝑡 ∼
(︃
0 1

0 0

)︃
, 𝒟 ∼

(︃
1 0

0 −1

)︃
, 𝒬+ ∼

(︃
0 1

−1 0

)︃
of f ≃ sl(2,R). These elements respectively generate the one-parameter

subgroups of 𝐹 ≃ SL(2,R) for lemma’s statement.
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Hereafter we denote 𝐸 := diag(1, 1).

Corollary 1.11. A matrix 𝐴 ∈ SL(2,R) belongs to a one-parameter

subgroup of SL(2,R) if and only if either tr𝐴 > −2 or 𝐴 = −𝐸. Equi-
valently, a point transformation Φ ∈ 𝐹 belongs to a one-parameter subgroup

of 𝐹 if and only if either 𝛼 + 𝛿 > −2 or 𝛼 = 𝛿 = −1 and 𝛽 = 𝛾 = 0.

Proof. The elements of each of the one-parameter subgroups from Lem-

ma 1.10 satisfy this property, which is stable under the subgroup conjugation

in 𝐹 ≃ SL(2,R). Conversely, any element of SL(2,R) satisfying this property
reduces to one of the matrix forms presented in Lemma 1.10.

Of course, Lemma 1.10 and Corollary 1.11 are well known, see, e.g., [25]

for Corollary 1.11.

Recall that the classification of elements of the group SL(2,R) is based
on the values of their traces. The matrix 𝐴 ∈ SL(2,R) with 𝐴 ̸= ±𝐸
is called elliptic if | tr𝐴| < 2, parabolic if | tr𝐴| = 2 and hyperbolic if

| tr𝐴| > 2. Therefore, Corollary 1.11 implies that the elliptic elements, the

hyperbolic and parabolic elements with positive traces, 𝐸 and −𝐸 consti-

tute exp
(︀
sl(2,R)

)︀
. Moreover, the multiplication by −𝐸 switches the si-

gns of matrix traces and thus maps the hyperbolic and parabolic parts of

exp
(︀
sl(2,R)

)︀
onto the complement of exp

(︀
sl(2,R)

)︀
in SL(2,R), and vice

versa. Roughly speaking, the action by −𝐸 change the relation “belongs to

(no) one-parameter subgroup” to its negation for hyperbolic and parabolic

elements of SL(2,R). In this sense, the role of −𝐸 on the level of one-

parameter subgroups is analogous to the role of a discrete element on the

level of connected components since such an element permutes the identity

component with other components of the corresponding Lie group. This is

why we call −𝐸 a pseudo-discrete element of SL(2,R). In general, given a

Lie group 𝐺 with Lie algebra g and exp(g) ̸= 𝐺id, we call an element 𝑔 ∈ 𝐺

pseudo-discrete if

𝑔
(︀
𝐺id ∖ exp(g)

)︀
⊆ exp(g).
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Note that any one-parameter subgroup of SL(2,R) that contains an elli-

ptic element consists of elliptic elements and the matrices ±𝐸, and thus the

multiplication by −𝐸 preserves each of such subgroups.

The presented arguments allow us to state and prove a characterization

of the elements of 𝐺ess that belong to the image exp(gess) of the exponential

map.

Теорема 1.12. A transformation Φ from 𝐺ess belongs to a one-parameter

subgroup of 𝐺ess if and only if its 𝐹 -component Φ𝐹 in the decomposition

Φ = Φ𝐹 ∘ Φ𝑅 according to the splitting 𝐺ess = 𝐹 ⋉ 𝑅 of 𝐺ess belongs to a

one-parameter subgroup of 𝐹 . In other words, Φ ∈ exp(gess) if and only if

Φ𝐹 ∈ exp(f).

Proof. The “only if” part of lemma’s statement directly follows from Lem-

ma 1.9. Let us prove the “if” part. It is obvious that the proof can be

done up to the subgroup conjugation in 𝐺ess, which indices the subgroup

conjugation in 𝐹 . In view of Lemma 1.10, we then can assume that

Φ𝐹 ∈ {P𝑡(𝜖1),D(𝜖2),Q
+(𝜖3), id} with fixed 𝜖1, 𝜖2 ̸= 0 and fixed 𝜖3 ∈ (0, 2𝜋).

If Φ𝐹 = id, then Φ ∈ 𝑅 = exp(r). Recall that the radical r is a nilpotent

algebra. Further, we assume that Φ𝐹 ̸= id. Consider the vector fields 𝑄 of

the form 𝑄 = �̂�+𝑎𝒢𝑥+𝑏𝒫𝑥+𝑐ℐ, where �̂� ∈ {𝒫 𝑡,𝒟,𝒬+}. Transformations
from the one-parameter subgroups corresponding to these vector fields are

respectively of the form

�̂� = 𝒫 𝑡 : 𝑡 = 𝑡+ 𝜖1, �̃� = 𝑥+ 𝑎𝜖1𝑡+ 𝑏𝜖1 +
1
2𝑎𝜖

2
1,

�̃� = exp
(︀
− 1

2𝑎𝜖1𝑥− 1
4𝑎

2𝜖21𝑡− 1
12𝑎

2𝜖31 − 1
4𝑎𝑏𝜖

2
1 + 𝑐𝜖1

)︀
𝑢,

�̂� = 𝒟 : 𝑡 = e2𝜖2𝑡, �̃� = e𝜖2
(︀
𝑥+ 𝑎(e𝜖2 − 1)𝑡+ 𝑏(1− e−𝜖2)

)︀
,

�̃� = exp
(︀
− 1

2𝑎(e
𝜖2 − 1)𝑥− 1

4𝑎
2(e𝜖2 − 1)2𝑡

)︀
× exp

(︀
− 1

2𝑎𝑏(e
𝜖2 − 1− 𝜖2) + 𝑐𝜖2 − 1

2𝜖2
)︀
𝑢,

�̂� = 𝒬+ : 𝑡 =
sin 𝜖3 + 𝑡 cos 𝜖3
cos 𝜖3 − 𝑡 sin 𝜖3

,
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�̃� =
𝑥+ (𝑎 sin 𝜖3 + 𝑏 cos 𝜖3 − 𝑏)𝑡− 𝑎 cos 𝜖3 + 𝑎+ 𝑏 sin 𝜖3

cos 𝜖3 − 𝑡 sin 𝜖3
,

�̃� =
√︀

| cos 𝜖3 − 𝑡 sin 𝜖3| exp
(︀
1
4(𝑎

2 + 𝑏2)𝜖3 + 𝑐𝜖3
)︀
𝑢

× exp

(︀
(𝑥+𝑎)2+𝑏2

)︀
sin 𝜖3+2𝑏(1− cos 𝜖3)(𝑥− 𝑏𝑡+ 𝑎)

−4(cos 𝜖3 − 𝑡 sin 𝜖3)
.

In the notation of Theorem 1.2, for arbitrary parameters 𝜆1, 𝜆0 and 𝜎 > 0,

the transformation Φ with reduced Φ𝐹 ∈ {P𝑡(𝜖1),D(𝜖2),Q
+(𝜖3) | 𝜖1, 𝜖2 ̸=

0, 𝜖3 ∈ (0, 2𝜋)} belongs to the respective one-parameter subgroup, where

the parameters 𝑎, 𝑏 and 𝑐 satisfies the following system:

P𝑡(𝜖1) : 𝜖1𝑎 = 𝜆1, 𝑏𝜖1 +
1
2𝑎𝜖

2
1 = 𝜆0, 𝑐𝜖1 − 1

12𝑎
2𝜖31 − 1

4𝑎𝑏𝜖
2
1 = ln𝜎,

D(𝜖2) : 𝑎(e𝜖2 − 1) = 𝜆1, 𝑏(1− e−𝜖2) = 𝜆0

𝑐𝜖2 − 1
2𝑎𝑏(e

𝜖2 − 1− 𝜖2)− 1
2𝜖2 = ln𝜎,

Q+(𝜖3) : 𝑎 sin 𝜖3 − 𝑏(1− cos 𝜖3) = 𝜆1, 𝑎(1− cos 𝜖3) + 𝑏 sin 𝜖3 = 𝜆0,

𝑐𝜖3 +
1
8(𝑎

2− 𝑏2) sin(2𝜖3) +
1
4(𝑎

2+ 𝑏2)𝜖3 − 1
2𝑎

2 sin 𝜖3

− 1
2𝑎𝑏(1−cos 𝜖3) cos 𝜖3 = ln𝜎.

It is obvious that each of the above systems has a unique solution.

Recalling that 𝜚1(J) = −𝐸, where 𝜚1 is an isomorphism between 𝐹 < 𝐺ess

and SL(2,R) (see Section 1.2), we have the following assertion.

Corollary 1.13. The transformation J = (𝑡, 𝑥, 𝑢) ↦→ (𝑡,−𝑥, 𝑢) is a pseudo-

discrete element of 𝐺ess.

Given a system of differential equations, it is natural to call pseudo-

discrete elements of its point symmetry (pseudo)group pseudo-discrete point

symmetries of this system. In the suggested terminology, the transformati-

on J = (𝑡, 𝑥, 𝑢) ↦→ (𝑡,−𝑥, 𝑢) can be called a pseudo-discrete point symmetry

of the equation (1) only if the following conjecture holds true.

Conjecture 1.14. A transformation Φ from the pseudogroup 𝐺 belongs to

a one-parameter subgroup of 𝐺 if and only if its 𝐺ess-component Φess in the
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decomposition Φ = Φess ∘Φlin according to the splitting 𝐺 = 𝐺ess⋉𝐺lin of 𝐺

belongs to a one-parameter subgroup of 𝐺ess. In other words, Φ ∈ exp(g) if

and only if Φess ∈ exp(gess).
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Chapter 2

Generalized symmetries of the heat equation

Since the equation (1) is an evolution equation, we can naturally identify

the quotient algebra of generalized symmetries of this equation with respect

to the equivalence of generalized symmetries with the algebra

Σ =
{︀
𝜂[𝑢]𝜕𝑢 | (D𝑡 −D 2

𝑥 )𝜂[𝑢] = 0
}︀

of canonical representatives of equivalence classes, see [26, Section 5.1]. Here

and in what follows the jet variable 𝑢𝑘 is associated with the derivative

𝜕𝑘𝑢/𝜕𝑥𝑘, 𝑘 ∈ N0, and the jet variables (𝑥, 𝑦, 𝑢𝑘, 𝑘 ∈ N0) constitute the

standard coordinates on the manifold defined by the equation (1) and its

differential consequences in the infinite-order jet space J∞(R2
𝑡,𝑥 × R𝑢) with

the independent variables (𝑡, 𝑥) and the dependent variable 𝑢. The notation

𝜂[𝑢] stays for a differential function of 𝑢 that depends on 𝑡, 𝑥 and a finite

number of 𝑢𝑘. D𝑡 and D𝑥 are the operators of total derivatives in 𝑡 and 𝑥,

respectively, that are restricted to such differential functions and the solution

set of the equation (1),

D𝑡 = 𝜕𝑡 +
∞∑︁
𝑘=0

𝑢𝑘+2𝜕𝑢𝑘, D𝑥 = 𝜕𝑥 +
∞∑︁
𝑘=0

𝑢𝑘+1𝜕𝑢𝑘.

The subspace Σ𝑛 =
{︀
𝜂[𝑢]𝜕𝑢 ∈ Σ | ord 𝜂[𝑢] ⩽ 𝑛

}︀
, 𝑛 ∈ N0 ∪ {−∞}, of Σ

is interpreted as the space of generalized symmetries of orders less than or

equal to 𝑛.2.1 The subspace Σ−∞ can be identified with the subalgebra glin

2.1The order ord𝐹 [𝑢] of a differential function 𝐹 [𝑢] is the highest order of derivatives of 𝑢 involved

in 𝐹 [𝑢] if there are such derivatives, and ord𝐹 [𝑢] = −∞ otherwise. If 𝑄 = 𝜂[𝑢]𝜕𝑢, then ord𝑄 := ord 𝜂[𝑢].
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of Lie symmetries of the equation (1) that are associated with the linear

superposition of solutions of this equation,

Σ−∞ = {Z(ℎ) := ℎ(𝑡, 𝑥)𝜕𝑢 | ℎ𝑡 = ℎ𝑥𝑥} ≃ glin.

The subspace family {Σ𝑛 | 𝑛 ∈ N0 ∪ {−∞}} filters the algebra Σ. Denote

Σ[𝑛] = Σ𝑛/Σ𝑛−1, 𝑛 ∈ N, Σ[0] = Σ0/Σ−∞ and Σ[−∞] := Σ−∞. The space Σ[𝑛]

is naturally identified with the space of canonical representatives of cosets

of Σ𝑛−1 and thus assumed as the space of 𝑛th order generalized symmetries

of the equation (1), 𝑛 ∈ N0 ∪ {−∞}.
In view of the linearity of the equation (1), an important subalgebra of

its generalized symmetries consists of the linear generalized symmetries,

Λ =

{︂
𝜂[𝑢]𝜕𝑢 ∈ Σ

⃒⃒⃒
∃𝑛 ∈ N0,∃ 𝜂𝑘 = 𝜂𝑘(𝑡, 𝑥), 𝑘 = 0, . . . , 𝑛 :

𝜂[𝑢] =
𝑛∑︁
𝑘=0

𝜂𝑘(𝑡, 𝑥)𝑢𝑘

}︂
.

The subspace Λ𝑛 := Λ∩Σ𝑛 of Λ with 𝑛 ∈ N0 is constituted by the generalized

symmetries with characteristics of the form

𝜂[𝑢] =
𝑛∑︁
𝑘=0

𝜂𝑘(𝑡, 𝑥)𝑢𝑘. (2.1)

These symmetries are of order 𝑛 if and only if the coefficient 𝜂𝑛 does not

vanish. The quotient spaces Λ[𝑛] = Λ𝑛/Λ𝑛−1, 𝑛 ∈ N, and the subspace Λ[0] =

Λ0 are naturally embedded into the respective spaces Σ[𝑛], 𝑛 ∈ N0, when

taking linear canonical representatives for cosets of Σ𝑛−1 containing linear

generalized symmetries. We interpret the space Λ[𝑛] as the space of 𝑛th order

linear generalized symmetries of the equation (1), 𝑛 ∈ N0.

Lemma 2.1. dimΛ[𝑛] = 𝑛+ 1, 𝑛 ∈ N0.

Proof. The criterion of invariance of the equation (1), (D𝑡 − D 2
𝑥 )𝜂 = 0,

with respect to linear generalized symmetries with characteristics 𝜂 of the
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form (2.1) implies the system of determining equations for the coefficients of

these characteristics,

Δ𝑘 : 𝜂𝑘𝑡 − 𝜂𝑘𝑥𝑥 = 2𝜂𝑘−1
𝑥 , 𝑘 = 0, . . . , 𝑛+ 1,

where we assume 𝜂−1 and 𝜂𝑛+1 to vanish. We first integrate the equati-

on Δ𝑛+1: 𝜂
𝑛
𝑥 = 0, obtaining 𝜂𝑛 = 𝜃(𝑡) for some smooth function 𝜃 of 𝑡. After

substituting the obtained value of 𝜂𝑛 into Δ𝑛, we consider the set Δ[0,𝑛] of

the equations Δ𝑘 with 𝑘 = 0, . . . , 𝑛 as a system of inhomogeneous linear di-

fferential equations with respect to the coefficients 𝜂𝑘
′
, 𝑘′ = 0, . . . , 𝑛 − 1.

It is convenient to represent the equations Δ𝑘 with 𝑘 = 1, . . . , 𝑛 as

𝜂𝑘−1
𝑥 = 1

2(𝜂
𝑘
𝑡 −𝜂𝑘𝑥𝑥) and integrate them with respect to 𝑥 in descending order.

As a result, we derive the following expression for 𝜂𝑛−𝑘, 𝑘 = 0, . . . , 𝑛− 1:

𝜂𝑛−𝑘 =
1

2𝑘𝑘!

d𝑘𝜃

d𝑡𝑘
𝑥𝑘 +𝑅𝑛−𝑘,

where 𝑅𝑛−𝑘 is a smooth function of (𝑡, 𝑥), which is a polynomial in 𝑥 with

deg𝑥𝑅
𝑛−𝑘 < 𝑘. In particular,

𝜂0 =
1

2𝑛𝑛!

d𝑛𝜃

d𝑡𝑛
𝑥𝑛 +𝑅0,

where 𝑅0 is a smooth function of (𝑡, 𝑥), which is a polynomial in 𝑥 with

deg𝑥𝑅
0 < 𝑛. In view of this, the equation Δ0: 𝜂

0
𝑡 − 𝜂0𝑥𝑥 = 0 means that 𝜂0 is

a polynomial solution of the linear heat equation, and thus d𝑛𝜃/d𝑡𝑛 = const,

i.e., 𝜃 is a polynomial with respect to 𝑡 of degree at most 𝑛, 𝜃 ∈ R𝑛[𝑡].

Moreover, for any 𝜃 ∈ R𝑛[𝑡] there is a solution of Δ[0,𝑛]. In other words, the

vector spaces Λ[𝑛] and R𝑛[𝑡] are isomorphic.

Corollary 2.2. dimΛ𝑛 =
𝑛∑︀
𝑘=0

dimΛ[𝑘] = 1
2(𝑛+ 1)(𝑛+ 2) < +∞, 𝑛 ∈ N0.

Lemma 2.3.

Σ[𝑛] = Σ̃[𝑛] :=
⟨︀
Q𝑘,𝑛−𝑘, 𝑘 = 0, . . . , 𝑛

⟩︀
,

where Q𝑘𝑙 := (G𝑘D𝑙
𝑥𝑢)𝜕𝑢 and G := 𝑡D𝑥 +

1
2𝑥.
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Proof. In view of the Shapovalov–Shirokov theorem [39, Theorem 4.1],

Lemma 2.1 implies that Σ[𝑛] = Λ[𝑛] for 𝑛 ∈ N0. The differential functions

D𝑥𝑢 = 𝑢𝑥 and G𝑢 = 𝑡𝑢𝑥 +
1
2𝑥𝑢 are the characteristics of the Lie symmetri-

es−𝒫𝑥 and−𝒢𝑥 of the equation (1), respectively, and hence the operators D𝑥

and G are recursion operators of this equation [26, Example 5.21]. Hence any

operator Q in the universal enveloping algebra generated by these operators

is a symmetry operator of (1), i.e., a generalized vector field (Q𝑢)𝜕𝑢 is

a generalized symmetry of (1). Therefore,
⟨︀
Q𝑘𝑙, 𝑘, 𝑙 ∈ N0

⟩︀
⊆ Λ ⊆ Σ, and

thus Σ̃[𝑛] ⊆ Σ[𝑛]. In addition, dim Σ̃[𝑛] = 𝑛+1 = dimΣ[𝑛], which means that

Σ[𝑛] = Σ̃[𝑛].

Since Σ = Σ−∞ ∔ Σ[0] ∔ Σ[1] ∔ · · · , in view of Lemma 2.3 we obtain the

following assertion.

Теорема 2.4. The algebra of generalized symmetries of the (1+1)-dimen-

sional linear heat equation (1) is Σ = Λ ∈ Σ−∞, where

Λ :=
⟨︀
Q𝑘𝑙, 𝑘, 𝑙 ∈ N0

⟩︀
, Σ−∞ :=

{︀
Z(ℎ)

}︀
,

with Q𝑘𝑙 := (G𝑘D𝑙
𝑥𝑢)𝜕𝑢, G := 𝑡D𝑥+

1
2𝑥, Z(ℎ) := ℎ(𝑡, 𝑥)𝜕𝑢, and the parameter

function ℎ runs through the solution set of (1).

Thus, the algebra Λ of the linear generalized symmetries of the equati-

on (1) is generated by the two recursion operators D𝑥 andG from the simplest

linear generalized symmetry 𝑢𝜕𝑢, and both the recursion operators and the

seed symmetry are related to Lie symmetries. In particular, on the solution

set of the equation (1), the generalized symmetries associated with the basis

elements 𝒫 𝑡,𝒟,𝒦, 𝒢𝑥, 𝒫𝑥 and ℐ of gess are, up to sign,Q02, 2Q11+ 1
2Q

00,Q20,

Q10, Q01, Q00, respectively, see [26, Example 5.21]. By analogy with gess, we

can call Λ the essential algebra of generalized symmetries of the equation (1).

Since D𝑥G = GD𝑥+
1
2 , the commutation relations between the generalized

vector fields spanning the algebra Σ are the following:

[Q𝑘𝑙,Q𝑘′𝑙′] =

min(𝑘,𝑙′)∑︁
𝑖=0

𝑖!

2𝑖

(︂
𝑘

𝑖

)︂(︂
𝑙′

𝑖

)︂
Q𝑘+𝑘′−𝑖, 𝑙+𝑙′−𝑖
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−
min(𝑘′,𝑙)∑︁
𝑖=0

𝑖!

2𝑖

(︂
𝑘′

𝑖

)︂(︂
𝑙

𝑖

)︂
Q𝑘+𝑘′−𝑖, 𝑙+𝑙′−𝑖,

[Z(ℎ),Q𝑘𝑙] = Z(G𝑘D𝑙
𝑥ℎ), [Z(ℎ1),Z(ℎ2)] = 0.

The radical r of gess is isomorphic to the algebra Λ1 ≃ Σ1/Σ−∞.

Let 𝜑 : r → h(1,R) be the isomorphism with 𝜑(ℐ) = 2𝑒1, 𝜑(𝒢𝑥) = 𝑒2,

𝜑(𝒫𝑥) = 𝑒3. Up to the antisymmetry of the Lie bracket, the only nonzero

commutation relation of h(1,R) is [𝑒2, 𝑒3] = 𝑒1. Thus, the universal envelopi-

ng algebra U(r) of the algebra r is isomorphic to the universal envelopi-

ng algebra U
(︀
h(1,R)

)︀
of the algebra h(1,R), which is the quotient of the

tensor algebra T
(︀
h(1,R)

)︀
by the two-sided ideal 𝐼 generated by the elements

𝑒1 ⊗ 𝑒2 − 𝑒2 ⊗ 𝑒1, 𝑒1 ⊗ 𝑒3 − 𝑒3 ⊗ 𝑒1, 𝑒2 ⊗ 𝑒3 − 𝑒3 ⊗ 𝑒2 − 𝑒1. On the other side,

it is obvious that the algebra U(r) is isomorphic to Λ.

Corollary 2.5. The algebra Λ of the linear generalized symmetries of the

equation (1) is isomorphic to the universal enveloping algebra U
(︀
h(1,R)

)︀
of

the rank-one Heisenberg algebra h(1,R).
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Chapter 3

Absence of discrete point symmetries

for Burgers equation

The above formalism, which was first introduced in [17] and developed

here using the remarkable Kolmogorov equation 𝑢𝑡 + 𝑥𝑢𝑦 = 𝑢𝑥𝑥 and the

heat equation 𝑢𝑡 = 𝑢𝑥𝑥, respectively, can be applied to many other both

linear and nonlinear systems of differential equations whose point symmetry

transformations have some components that are linear fractional in certain

variables. Among such systems (including single differential equations) are

the Burgers equation [32], the nonlinear diffusion equation with power nonli-

nearity of power −4/3 [29], the Harry Dym equation [15, Example 11.6], [14,

Section 4], the two-dimensional Burgers system [16], the Chazy equations [15,

Example 11.5], a family of third-order ordinary differential equations arising

in the course of finding integrable cases of Abel equations [27], and two-

dimensional shallow water equations with flat bottom topography [7]. Since

the Burgers equation is closely related to the heat equation (1), below we

present, within the framework of this formalism, a refined representation of

the point symmetry group of the Burgers equation

𝑣𝑡 + 𝑣𝑣𝑥 = 𝑣𝑥𝑥, (3.1)

cf. [31]. A similar interpretation of the point symmetry (pseudo)groups of the

mentioned and other analogous systems will be a subject of a forthcoming

paper.

The maximal Lie invariance algebra of the equation (3.1) is gB = ⟨𝒫 𝑡,
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�̆�, �̆�,𝒫𝑥,𝒢𝑥⟩, where

𝒫 𝑡 = 𝜕𝑡, �̆� = 2𝑡𝜕𝑡 + 𝑥𝜕𝑥 − 𝑣𝜕𝑣, �̆� = 𝑡2𝜕𝑡 + 𝑡𝑥𝜕𝑥 + (𝑥− 𝑡𝑣)𝜕𝑣,

𝒫𝑥 = 𝜕𝑥, 𝒢𝑥 = 𝑡𝜕𝑥 + 𝜕𝑣.

Up to the antisymmetry of the Lie bracket, the nonzero commutation relati-

ons between the basis elements gB are exhausted by

[�̆�,𝒫 𝑡] = −2𝒫 𝑡, [�̆�, �̆�] = 2�̆�, [𝒫 𝑡, �̆�] = �̆�,
[𝒫 𝑡,𝒢𝑥] = 𝒫𝑥, [�̆�,𝒢𝑥] = 𝒢𝑥, [�̆�,𝒫𝑥] = −𝒫𝑥, [�̆�,𝒫𝑥] = −𝒢𝑥.

The algebra gB is nonsolvable. Its radical r̆ = ⟨𝒢𝑥,𝒫𝑥⟩, coincides with its

nilradical and is isomorphic to the abelian two-dimensional Lie algebra 2𝐴1

(see, for example, the notation in [35] or [1][Appendix A]). The Levi factor

f̆ = ⟨𝒫 𝑡, �̆�, �̆�⟩ of gB is isomorphic to sl(2,R). In the Levi decomposition

gB = f̆ ∈ r̆, the action of f̆ on r̆ coincides, in the basis (𝒢𝑥,𝒫𝑥) of r̆, with the

real representation 𝜌1 of sl(2,R). Thus, the algebra gB is isomorphic to the

algebra sl(2,R) ∈𝜌1 2𝐴1.

Using results of [31, Section 1] and [32, Theorem 5] and rearranging them

in the spirit of Theorem 1.2, we obtain the enhanced representation for point

symmetries of the equation (3.1).

Теорема 3.1. The point symmetry group 𝐺B of the Burgers equation (3.1)

consists of the point transformations of the form

𝑡 =
𝛼𝑡+ 𝛽

𝛾𝑡+ 𝛿
, �̃� =

𝑥+ 𝜆1𝑡+ 𝜆0
𝛾𝑡+ 𝛿

,

𝑣 = (𝛾𝑡+ 𝛿)𝑣 − 𝛾𝑥+ 𝜆1𝛿 − 𝜆0𝛾,

(3.2)

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜆1 and 𝜆0 are arbitrary constants with 𝛼𝛿 − 𝛽𝛾 = 1.

The group 𝐺B contains the proper normal subgroup �̆� consisting of

the transformations of the form (3.2) with (𝛼, 𝛽, 𝛾, 𝛿) = (1, 0, 0, 1) and,

moreover, splits over it, 𝐺B = 𝐹 ⋉ �̆�. Here the subgroup 𝐹 of 𝐺B is si-

ngled out by the constraints 𝜆1 = 𝜆0 = 0. The subgroups 𝐹 and �̆� are
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isomorphic to SL(2,R) and (R2,+), respectively, where (R2,+) is the real

two-dimensional connected torsion-free abelian Lie group. These isomorphi-

sms are established by the correspondences

𝜚1 = (𝛼, 𝛽, 𝛾, 𝛿)𝛼𝛿−𝛽𝛾=1 ↦→
(︃
𝛼 𝛽

𝛾 𝛿

)︃
, (𝜆1, 𝜆0) ↦→ (𝜆1, 𝜆0).

The standard conjugacy action of the subgroup 𝐹 < 𝐺B on the normal

subgroup �̆� � 𝐺B is given by (�̃�1, �̃�0) = (𝜆1, 𝜆0)𝜚1(𝛼, 𝛽, 𝛾, 𝛿). Summing

up, the group 𝐺B is isomorphic to the group SL(2,R) ⋉𝜙 (R2,+), where

𝜙 : SL(2,R) → Aut
(︀
(R2,+)

)︀
is the group antihomomorphism defined by

𝜙(𝛼, 𝛽, 𝛾, 𝛿) = (𝜆1, 𝜆0) ↦→ (𝜆1, 𝜆0)𝜚1(𝛼, 𝛽, 𝛾, 𝛿). Thus, the group 𝐺B is

connected. In other words, all elements of 𝐺B are Lie symmetries of the

equation (3.1), and we have the following assertion, cf. [14, Section 4].

Corollary 3.2. The Burgers equation admits no discrete point symmetry

transformations.

In the notation of Theorem 3.1, the most general form of solutions of the

equation (3.1) that are obtained from a given solution 𝑣 = 𝑓(𝑡, 𝑥) of (3.1)

under action of 𝐺B is

𝑣 =
1

𝛼− 𝛾𝑡
𝑓

(︂
𝛿𝑡− 𝛽

𝛼− 𝛾𝑡
,

𝑥

𝛼− 𝛾𝑡
− 𝜆1

𝛿𝑡− 𝛽

𝛼− 𝛾𝑡
− 𝜆0

)︂
− 𝛾𝑥

𝛼− 𝛾𝑡
+

𝜆1
𝛼− 𝛾𝑡

.

Similarly to Theorem 1.12, we can prove the following assertion, which,

simultaneously with Corollary 1.11 exhaustively describes the elements of

one-parameter subgroups of 𝐺B.

Теорема 3.3. A transformation Φ from 𝐺B belongs to a one-parameter

subgroup of 𝐺B if and only if its 𝐹 -component Φ𝐹 in the decomposition

Φ = Φ𝐹 ∘ Φ�̆� according to the splitting 𝐺B = 𝐹 ⋉ �̆� of 𝐺B belongs to a

one-parameter subgroup of 𝐹 . In other words, Φ ∈ exp(gB) if and only if

Φ𝐹 ∈ exp(̆f).

Corollary 3.4. J̆
(︀
𝐺B ∖ exp(gB)

)︀
⊆ exp(gB) for the transformation J̆ :=

(𝑡, 𝑥, 𝑣) ↦→ (𝑡,−𝑥, 𝑣), which belongs to 𝐺B, i.e., this transformation is a
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pseudo-discrete element of 𝐺B or, equivalently, is a pseudo-discrete point

symmetry of the equation (3.1).

It is a well-known fact that the equation (3.1) is linearized to the heat

equation (1) using the Hopf–Cole transformation 𝑣 = −2𝑢𝑥/𝑢 [12, p. 102].

In addition to the importance of this transformation for constructing exact

solutions of the Burgers equation in the context of applied problems, it is also

significant from the point of view of group analysis. Consider the Lie group

epimorphism 𝜌 : 𝐺ess → 𝐺B that is induced by the Hopf–Cole transformation,

where an arbitrary element of 𝐺ess, which is defined by (1.4), is mapped by 𝜌

to the element of 𝐺B given by (3.2) with the same values of the parameters 𝛼,

𝛽, 𝛾, 𝛿, 𝜆1 and 𝜆0. The infinitesimal counterpart of 𝜌 is given by 𝜌′(𝑄) = �̆�

for 𝑄 ∈ {𝒫 𝑡,𝒟,𝒦,𝒢𝑥,𝒫𝑥}, and 𝜌′(ℐ) = 0. Since ker 𝜌 = Z(𝐺ess) and

ker 𝜌′ = z(gess) = ⟨ℐ⟩, we have that the Lie group𝐺ess and the Lie algebra gess

are central extensions of 𝐺B and gB, respectively. In other words, the followi-

ng diagram is commutative and each of its rows is exact. Here 𝜄 and 𝑖 are

problems, it is also significant from the point of view of group analysis. Consider the Lie group
epimorphism ρ : Gess → GB that is induced by the Hopf–Cole transformation, where an arbitrary
element of Gess, which is defined by (5), is mapped by ρ to the element of GB given by (9) with
the same values of the parameters α, β, γ, δ, λ1 and λ0. The infinitesimal counterpart of ρ
is given by ρ′(Q) = Q̆ for Q ∈ {Pt,D,K,Gx,Px}, and ρ′(I) = 0. Since ker ρ = Z(Gess) and
ker ρ′ = z(gess) = 〈I〉, we have that the Lie group Gess and the Lie algebra gess are central
extensions of GB and gB, respectively. In other words, the following diagram

0 z(gess) gess gB 0

id Z(Gess) Gess GB id

ι′ i′

expZ(Gess)

ρ′

expGess

ς′

exp
GB

ι i ρ ς

is commutative and each of its rows is exact. Here ι and i are inclusion monomorphisms, ς
is the trivial epimorphism, and prime denotes the differential of the corresponding Lie group
homomorphism.

8 Conclusion

Having revisited the state-of-the-art results on classical symmetry analysis of the linear (1+ 1)-
dimensional heat equation (1), we found out an inconsistency in the description of the structure
of the complete point symmetry pseudogroup G of (1), which in turn affected the classification
of subalgebras of gess. A correct list of Gess-inequivalent subalgebras of gess is strongly required
for a correct classification of Lie reductions of (1). This is why the aim of the present paper was
to refine and extend the classical results on algebraic properties of the Lie pseudogroup G and
its Lie algebra g.

The pseudogroup G is given in Theorem 2. To compute it, we have used the direct method,
simplifying the computation due to the fact that the equation (1) belongs to the class E of
linear evolution (1 + 1)-dimensional second-order equations (3), whose equivalence groupoid is
well known. More specifically, as stated in Proposition 1, the class E is normalized in the usual
sense, i.e., its equivalence groupoid coincide with the action groupoid of the equivalence pseu-
dogroup G∼

E of this class, see [28] for details. The description of admissible transformations
within the class E straightforwardly implies the principle constraints for the point symmetry
transformations of (1). Then using these constraints we have searched for the equivalence trans-
formations from G∼

E that preserve the heat equation, or, equivalently, constitute the vertex group
of (1), which is actually a pseudogroup. This vertex group can in fact be identified with the
pseudogroup G.

The pseudogroup G splits over its normal abelian pseudosubgroup Glin that is associated with
the linear superposition of solutions of the equation (1), G = Gess ⋉Glin. In Section 3, we have
redefined the group operation in G via extending the domains of compositions of transformations
from G and have thus turned the pseudogroup Gess into a Lie group, which has simplified its
structure. We have found out that the group Gess consists of two connected components and
the only independent discrete symmetry J′ : (t, x, u) 7→ (t, x,−u) swaps them. The identity
component Gess

id of Gess is isomorphic to the semidirect product of the real degree-two special
linear group SL(2,R) and the real rank-one Heisenberg group H(1,R), where the former acts on
the latter by conjugation.

One more unexpected result, which is inspired by studying the structure of the group G,
is that the transformations J and K′ belong to the one-parameter subgroup of G generated
by vector field Q+. However, they were for a long time considered as discrete point symmetry
transformations of the equation (1). In view of this fact, we have refined the classification of
subalgebras of gess or, equivalently, the special Galilei algebra in dimension 1+2.

18

inclusion monomorphisms, 𝜍 is the trivial epimorphism, and prime denotes

the differential of the corresponding Lie group homomorphism.
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Conclusion

Having revisited the state-of-the-art results on classical symmetry analysis

of the linear (1 + 1)-dimensional heat equation (1), we found out an

inconsistency in the description of the structure of the point symmetry

pseudogroup 𝐺 of (1), which in turn affected the classification of subalgebras

of gess. A correct list of 𝐺ess-inequivalent subalgebras of gess is strongly requi-

red for a correct classification of Lie reductions of (1). This is why the aim of

the present thesis was to refine and extend the classical results on algebraic

properties of the Lie pseudogroup 𝐺 and its Lie algebra g.

The pseudogroup 𝐺 is given in Theorem 1.2. To compute it, we have

used the direct method, simplifying the computation due to the fact that the

equation (1) belongs to the class ℰ of linear evolution (1 + 1)-dimensional

second-order equations (1.2), whose equivalence groupoid is well known. More

specifically, as stated in Proposition 1.1, the class ℰ is normalized in the usual

sense, i.e., its equivalence groupoid coincide with the action groupoid of the

equivalence pseudogroup 𝐺∼
ℰ of this class, see [37] for details. The description

of admissible transformations within the class ℰ straightforwardly implies the

principle constraints for the point symmetry transformations of (1). Then

using these constraints we have searched for the equivalence transformations

from 𝐺∼
ℰ that preserve the heat equation, or, equivalently, constitute the

vertex group of (1), which is actually a pseudogroup. This vertex group can

in fact be identified with the pseudogroup 𝐺.

The pseudogroup 𝐺 splits over its normal abelian pseudosubgroup 𝐺lin

that is associated with the linear superposition of solutions of the equati-

on (1), 𝐺 = 𝐺ess⋉𝐺lin. In Section 1.2, we have redefined the group operation

in 𝐺 via extending the domains of compositions of transformations from 𝐺

and have thus turned the pseudogroup 𝐺ess into a Lie group, which has

simplified its structure. We have found out that the group 𝐺ess consists
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of two connected components and the only independent discrete symmetry

I′ = (𝑡, 𝑥, 𝑢) ↦→ (𝑡, 𝑥,−𝑢) swaps them. The identity component 𝐺ess
id of 𝐺ess

is isomorphic to the semidirect product of the real degree-two special linear

group SL(2,R) and the real rank-one Heisenberg group H(1,R), where the
former acts on the latter by conjugation.

One more unexpected result, which is inspired by studying the structure of

the group 𝐺, is that the transformations J and K′ given in (1.6) belong to the

one-parameter subgroup of𝐺 generated by the vector field𝒬+. However, they

were for a long time considered as discrete point symmetry transformations

of the equation (1). In view of this fact, we have refined the classification

of all subalgebras of gess or, equivalently, of the special Galilei algebra in

dimension 1+1. We have also classify one-dimensional subalgebras of the

entire algebra g, which have allowed us to conclude that inequivalent Lie

reductions of the equation (1) to ordinary differential equations are exhausted

by those related to one-dimensional subalgebras of gess.

Another interesting question for studying was when a transformation

from 𝐺 belongs to a one-parameter subgroup of 𝐺 or, in other words,

to exp(g). We have solved this problem for elements of the finite-dimensional

subgroup 𝐺ess of 𝐺 in Theorem 1.12 and conjectured the analogous statement

for the entire group 𝐺. In view of these assertions, the transformation J is

somewhat peculiar. It maps 𝐺ess
id ∖ exp(gess) to exp(gess), and thus we call J

a pseudo-discrete element of 𝐺ess, see Corollary 1.13. The answer to the

question whether J is a pseudo-discrete symmetry of the equation (1), or

equivalently, pseudo-discrete element of 𝐺 requires proving Conjecture 1.14.

In Theorem 2.4, we have constructed an explicit representation for the

elements of the algebra Σ of generalized symmetries of the equation (1).

The obvious and well-known part of the theorem is that the algebra Σ

is a semidirect sum of the algebra Λ of the linear generalized symmetries

of (1) and the ideal Σ−∞ associated with the linear superposition of soluti-

ons of (1). We have proved that the algebra Λ is generated by the recursion
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operators D𝑥 and G from the simplest generalized symmetry 𝑢𝜕𝑢, and thus

it is isomorphic to the universal enveloping algebra of the rank-one real Hei-

senberg algebra h(1,R).
The developed technique based on redefining the transformation composi-

tion can be applied to any system of differential equations such that certain

components of all its point symmetries are linear fractional functions. We

have illustrated this possibility using the Burgers equation as an example.

Our choice for the example is justified by the fact that the Burgers equati-

on (3.1) is linearized to the heat equation (1) by the Hopf–Cole transformati-

on. Thus, in Section 3 we have revisited the study of the point symmetry

group 𝐺B of the Burgers equation. In particular, we have proved that the

group 𝐺B is connected or, in other words, the Burgers equation admits no

discrete point symmetries. We also have shown that the group𝐺ess is a central

extension of the group 𝐺B. The study of other systems mentioned in the first

paragraph of Section 3 will be a subject of a further research.
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