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Weak superconductivity. Josephson effect.

In 1962 Brian Josephson) predicted theoretically
(experimental confirmation took place in 1963-64) the
following facts:

DC Josephson effect. Superconducting current can flow through the tunnel
junction (for example superconductor/insulator/superconductor).

DC Josephson effect. If the current exceeds certain critical value, the non-zero
voltage drop appears on the junction which in its turn causes HF
electromagnetic radiation.

In 1973 for his discovery Josephson was awarded the Nobel Prise.
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Josephson equations

Weak superconductivity - a number of phenomena in
systems that consist of weakly coupled
superconductors separated by the media where
supercondunductivity is absent or strongly supressed.
Examples: (a) tunnel junction
superconductor-insulator-superconductor (SIS);
(b) superconductor-normal metal-superconductor
(SNS) ;
(c) Notarys bridge;
(d-e) Dayem bridge.

DC Josephson effect Is = Ic sinφ ,
where φ = Θ2 −Θ1 and Θ1,2 are the phases of the macroscopic wave functions
of the superconductors 1 and 2; Ic - critical Josephson current that depends on
the junction properties.

AC Josephson effect

2eV = ~∂φ
∂t

. (1)

Here V is the voltage drop on the junction.
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Derivation of the Josephson equations.

Time evolution of the Josephson junction as a quantum mechanical system is
governed by the Schrödinger equation:

i~∂Ψ

∂t
= ĤΨ (2)

The wave-function is given as a linear combination of two states:
Ψ(t) =

P
k=1,2 Ck (t)ψk

Each superconductor is described by the
macroscopic wave function ψ1,2

i~dCk

dt
=
X

n

HmnCn(t) ,Hmn =

Z
ψ∗mĤψndV (3)

where H11 = eV , H22 = −eV , H12 = H21 = K .

i~dC1

dt
= eVC1(t) + KC2(t), (4)

i~dC2

dt
= KC1(t)− eVC2(t). (5)
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Both superconduncting leads are made from the same material: |C1|2 = |C2|2 = ns, ns

- density of the supercurrent carriers, thus, C1,2 =
√

ns exp(iθ1,2). Separating the real
and imaginary parts, we obtain:

dns

dt
=

2Kns

~
sinφ , (6)

dθ1

dt
= −K

~
cosφ− eV

~
, (7)

dθ2

dt
= −K

~
cosφ+

eV
~

. (8)

Here φ = θ2 − θ1.

1 Subtracting Eqs. (7) and (8) we obtain V = ~
2e

dφ
dt .

2 Since the supercurrent through the junction satisfies Is ∼ dns/dt , we arrive to:

Is = Ic sinφ . (9)
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Equivalent scheme of the small Josephson junction,
RCSJ model

Within the RCSJ (resistively and capacitively
shunted junction) model the DC biased JJ can be
treated as a parallelly shunted (i) resistor, (ii)
condensator and (iii) superconducting element.
Use Kirchhoff laws:

IB = IQ + IR + IS , IQ =
dQ
dt

= C
dV
dt

, IR =
V
R
.

C~
2e

φ̈+
~

2eR
φ̇+ Ic sinφ = IB ,

In the dimensionless form

φ̈+ αφ̇+ sinφ = γ ,

t → tωJ , ωJ =

r
2eIc
C~

, α =

r
~

2eIcR2C
, γ = IB/Ic .
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Current-voltage characteristic of the junction

One of the ways to study the junction is to
measure the current-voltage characteristic
(CVC).

Mechanical analogue - a pendulum with the
constant torque γ or a particle in the
washboard-like potential:

φ̈+ αφ̇ = −∂V (φ)

∂φ
,V (φ) = 1− cosφ− γφ

Experimental CVC, source: Barone, Paterno

(1982).
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CVC of the junction. Phase plane.

A limit cycle exists.
No limit cycle.
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CVC of the junction. Hysteresis.

Depending on relation btw α
and γ, on the phase plane
(φ, φ̇) there could exist a
limit cycle
φ(t) = φ0 + ωt + ψ(t),
ψ(t) = ψ(t + T ).

For γthr < γ < 1 system can be in two states:

pendulum rotation with the constant
frequency, V̄ ∝

D
φ̇
E

T
6= 0 - voltage drop on

the junction -resistive state;
fixed point φ = arcsin γ - superconducting
state.

For γ > 1 - only resistive state.

For γ < γthr - only superconducting state.

by W.J. Johnson, PhD Thesis,
Univ. of Wisconsin (1968); from
Barone, Paterno (1982).
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Long Josephson junctions

Spatial dependence φ = φ(x , t);

Length in X direction� length in Y direction,
l � w ;

Thickness of the superconduncting leads�
London penetration depths (λ1,2);

Neglect boundary effects;

Neglect dissipation effects and external
currents.

rotH =
∂D
∂t

+ j =⇒ ∂Hy

∂x
=
∂Dz

∂t
+ jz = jc sinφ+ C/w

∂V
∂t

= jc sinφ+
C~

2ew
∂2φ

∂t2 ,

here jc - critical current per unit area, C = εε0w/d - capacitance per unit length.

Hy = ± ~
2e(λ1 + λ2 + d)µ0

∂φ

∂x
=⇒ 1

ω2
J
φtt − λ2

Jφxx + sinφ = 0 .

Sine-Gordon equation.
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Long Josephson junction
Generalized momentum of the Cooper pair : ~∇θ = 2mvs + 2eA.

Ignore the areas where the supercurrent is absent
(vs ≡ 0). Suppose d + λ1 + λ2 � superconductor
thicknessZ 3

1
∇θd l +

Z 4

2
∇θd l =

2e
~

„Z 3

1
Ad l +

Z 4

2
Ad l

«
,

2e
~

I
Ad l ≡ 2e

~
dΦ = θ3 − θ1 + θ2 − θ4 ,

Taking into account that θ3 − θ4 = φ(x + dx) and θ1 − θ2 = φ(x), one obtains

dφ
dx

=
2e
~

dΦ

dx
=

2π
Φ0

dΦ

dx
, Φ0 =

π~
e
.

Connection between the phase difference and magnetic field:

dΦ = By (λ1 + λ2 + d)dx = µ0Hy (λ1 + λ2 + d)dx =⇒

=⇒ Hy (x , t) =
~

2e(λ1 + λ2 + d)µ0

∂φ(x , t)
∂x

.
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Electromagnetic excitations. Parameters.

Josephson penetration depth - spatial scale of magnetic field penetration in X
direction

λJ =

s
wΦ0

2πµ0Ic(d + λ1 + λ2)
=

r
~

2eLIc
=

r
Φ0

2πLIc
, L = µ0

d + λ1 + λ2

w

λ1,2 ∼ 10−7m, λJ � λ1,2: λJ ∼ 0.1mm.

Magnetic flux quantum:
in SI: Φ0 = π~

e = 2.064−15Weber ,
in Gauss system : Φ0 = π~c

e = 2.064−7Gauss× sm2;

Swihart velocity c̄ = 1/
√

LC = c
q

d
ε(d+λ1+λ2)

,

maximal velocity of the electromagnetic waves velocity in the junction.
For the typical parameters ε ' 4, d = 2× 10−9m one obtains c̄ ≈ 0.02c ÷ 0.05c.

Josephson plasma frequency - minimal plane wave frequency:

ωJ = c̄/λJ =

r
2πIc
CΦ0

.
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Electromagnetic excitations. Waves.

Weak external field, φ� 1

ω2
Jφtt − λ2

Jφxx + φ = 0 .

Stationary case: φ ∼ e−x/λJ - magnetic field
penetrates the junction in the depth ∼ λJ .

Non-stationary case - small-amplitude waves (so-called Josephson plasmons)
φ(x , t),H(x , t) ∼ exp i(qx − ωt) with dispersion law:

ω(q) = ±
q
ω2

J + c̄2q2.

Nonlinear case - cnoidal waves, just nonlinear extension of plane waves, do not
produce average voltage, < V >T = 0.
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Electromagnetic excitations. Vortices.
Travelling wave solutions

z = x − vt , u(x , t) = u(x − vt) ≡ u(z) .

d2u
dz2 =

sin u
1− v2 .

SGE reduces to
v2 − 1

2

„
du(z)

dz

«2

+ (1− cos u) = E ,

z − z0 = ±
Z u

u0

s
v2 − 1

2
ˆ
E − 2 sin2 (w/2)

˜dw .

Solutions can be expressed via elliptic functions

F (φ; k) =

Z φ

0

dθp
1− k2 sin2 θ

≡ ζ , k2 < 1 , φ = amζ.

sn(ζ; k) = sinφ , cn(ζ; k) = cosφ ,

K (k) =

Z π/2

0

dθp
1− k2 sin2 θ

=

Z 1

0

dx√
1− x2

√
1− k2x2

.
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Electromagnetic excitations. Vortices.

When H > Hcr - spiral waves:

φ(x , t) = π + 2 arcsin

"
±sn

 
± x − vt − x0

kλJ
p

1− (v/c̄)2
; k

#!

V = ∓Φ0ωJ

2π
2v/c̄

k
p

1− (v/c̄)2
dn

"
x − vt − x0

λJ
p

1− (v/c̄)2
; k

#
,

Spiral waves are trains of vortices or, alternatively, sequences of positive
(negative) pulses with the period 2k

p
1− (v/c̄)2K (k)/ωJ , V̄ 6= 0!.

For k → 1 the period→∞ and just on vortex remains

φ(x , t) = 4 arctan

"
exp

 
± x − vt
λJ
p

1− (v/c̄)2

!#
.

Vortex carries exactly one magnetic flux quantum:

Φ =

Z +∞

−∞
dΦ =

2π
Φ0

Z +∞

−∞
dφ = ± ~

2e
[φ(+∞)− φ(−∞)] = ±Φ0 .

Therefore Josephson vortex is also called fluxon, and spiral waves - fluxon
waves.
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Electromagnetic excitations. Vortices.

Fluxon (+) or antifluxon(-) form a
two-parametric (x0, v) family of solutions

φ(x , t) = 4 arctan

"
exp

 
± x + x0 − vt
λJ
p

1− (v/c̄)2

!#
.

Velocity is bounded |v | < c̄.

Thickness is defined by the Lorentz
contraction factor ∝

p
1− (v/c̄)2.

Mechanical analogue
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Electromagnetic excitations. Total energy.
Total energy stored in the finite junction.

wJ =

Z t

0
P(t ′)dt ′ =

Z t

0
I(t ′)V (t ′)dt ′ =

Z t

0

»
Ic sinφ+

C
d1

∂V
∂t ′

–
Vdt ′ =

=
Ic~
2e

Z t

0
sinφ

∂φ

∂t ′
dt ′ +

C
w

„
~

2e

«2 Z t

0
φ(t ′)

∂φ

∂t ′
dt ′ =

C
w

„
~

2e

«2
φ2

t

2
+

+
jc~
2e

(1− cosφ) .

Magnetic field energy density:

wH =
µ0H2dz

2
=
µ0dz

2

„
~

2edzµ0

«2

φ2
x , dz = d + λ1 + λ2 .

Total free energy density w = wJ + wH :

w =
~2

4µ0e2dz

φ2
x

2
+

C~2

4e2w
φ2

t

2
+

jc~
2e

(1− cosφ) =
jc~
2e

»
λ2

Jφ
2
x

2
+
ω2

Jφ
2
t

2
+ 1− cosφ

–
.

In dimensionless units:

W =
jc~λJ

2e

Z L/λJ

0

„
φ2

x + φ2
t

2
+ 1− cosφ

«
dx =

jc~λJ

2e
W̄ .
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Solitons and their properties

Solitons - nonlinear wave excitations, that

are localized in space;
propagate with constant shape and velocity;
do not change when interact.

Solitons are observed in many physical systems: surface waves, optical
waveguides, magnets, cold atomic gases (Bose-Einstein condensates).

Nonlinear wave equation that support solitons can be solved exacly through the
Inverse Scattering Transform (IST).

Sine-Gordon equation (φtt − φxx + sinφ = 0) is completely integrable - has
infinite number of integrals of motion. Some of them:

Charge Q = 1
2π

∫ +∞
−∞ φxdx ,

Momentum P = −
∫ +∞
−∞ φtφxdx .

Energy H =
∫ +∞
−∞

(
φ2

t
2 +

φ2
x

2 + 1− cosφ
)

dx .
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Inverse scattering transform (IST) method

”Direct” spectral problem

ψx = Û(λ)ψ , Û(λ) =

»
iλ q(x)

r(x) −iλ

–
, ψ(x , λ) = (ψ1, ψ2)T ,

λ - spectral parameter, q(x), r(x) ∈ C∞,
R +∞
−∞ |r(x)|dx <∞,R +∞

−∞ |q(x)|dx <∞ , q(x) = r(x) ≡ φx/2 for SG.

For the spectral problem φx (x) is potential, for SGE - initial condition.

Time evolution of scattering data

ψt = V̂ (λ)ψ , V̂ =
1

4iλ

„
cosφ −i sinφ
i sinφ − cosφ

«
,

The problem is isospectral: λ = const if the initial condition evolves as a SGE
φxt = sinφ solution.

Consistency condition: ∂Û(λ)
∂t −

∂V̂ (λ)
∂x −

h
Û(λ), V̂ (λ)

i
= 0↔ .φxt = sinφ

Inverse problem - reconstruction of the time evolution of φ(x , t) from the
scattering data ψ(x , t , λ) and spectrum λn using so called
Gelfand-Levitan-Marchenko (GLM) equation.
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IST method - transfer to the new “action-angle” equation.

Topological soliton (+) and antisoliton(-):

φ(x , t) = 4 arctan e
± x−vt√

1−v2

Impossible to remove by local deformations.

Soliton has clearly defined charged particle properties, in particular

Charge: Q = ±1;
Momentum: P = 8v/

√
1− v2;

Energy: E = 8/
√

1− v2 .
Two solitons with same polarity (Q = 1) pass through each other without change;

Two solitons with opposite polarities (Q = ±1) form a bound state - bion or breather

φ(x , t) = 4 arctan

µ

ω

sin (ωt − qx − ψ0)

cosh [µ (x − x̄0 − vt)]

ff
, ω2 + µ2 =

1
1− v2 , q = ωv .

If v = 0 - immobile localized vibration with ω < 1.
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Dissipative effects and external bias

Two types of dissipation exist:

Normal dissipation - caused by the electron motion across the junction,
iR,⊥ = V

R⊥
= ~

2eR⊥
∂φ
∂t ;

Surface dissipation - caused by the electron motion along the junction,
1

R||
∂2V
∂x2 = ~

2eR||
∂3φ
∂t∂x2 .

~
2eL

∂2φ

∂x2 +
1

R||
∂2V
∂x2 = C

∂V
∂t

+ Ic sinφ+
~

2eR⊥
∂φ

∂t
+ IB .

In the dimensional units x → x/λJ , t → tωJ :

βφxxt + φxx − φtt − αφt = sinφ+ γ .

where

α =
1

R⊥

r
Φ0

2πIcC
, β =

s
2πL2Ic
R2
||CΦ0

.
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Soliton motion in the long junction

Consider the LJJ with the length →∞ with a soliton inside.
Total energy

dH(φ)

dt
= −

Z +∞

−∞
(αφ2

t +βφ2
xt )dx , H(φ) = HSG+HP =

Z +∞

−∞

»
φ2

t + φ2
x

2
+ 1− cosφ+ γφ

–
dx .

decreases because α, β > 0.
Terms with α, β, γ - perturbation. Assumption: the perturbation is so weak and slow,
that does not change the soliton shape. Only the parameter(s) evolve in time (due to
perturbation).
Since HSG(φ0) = 8/

√
1− v2, assuming v = v(t), we obtain

8v dv
dt

(1− v2)3/2 = −
Z +∞

−∞
(γφ0t +αφ0

2
t +βφ0

2
xt )dx → dv

dt
= ±πγ

4
(1−v2)3/2−αv(1−v2)−β

3
v .

In the limit t → +∞ equilibrium velocity (if β = 0)

v(t → +∞) ≡ v∞ = ±sign(γ)

"
1 +

„
4α
πγ

«2
#−1/2

.

Reference: McLaughlin, Scott, Phys. Rev. A 1978.
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CVC of the long junction

Linear junction with length l , boundary conditions: φx (0, t) = φx (l, t) = 0,

Soliton shuttle - soliton reflects from the junction edges and changes polarity
each time.

Average voltage drop (dimensionless):

〈V 〉T =
1
l

lim
t→+∞

1
t

Z t

0

Z l

0

∂φ(x ′, t ′)
∂t

dx ′dt ′ =
1
T

Z T

0

∂φ(x ′, t ′)
∂t

dt ′ =
2πv∞

l

Ring junction of length l = 2πR, l � w .

Periodic b.c. (“+” for soliton and “-” for
antisoliton): φ(x , t)± 2π = φ(x + l, t) .

At t → +∞ the soliton will circumvent the
junction during the time T = l/v∞. Thus,

〈V 〉T =
2πv∞

l
=

v∞
R
.

First experiment - Davidson et al, Phys. Rev. Lett.
1985.
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Josephson junction array

Consider a parallel array of identical JJs (see Watanabe et al, PRL 1996)

Josephson equations + Kirchhoff
laws:

C~
2e

φ̈n +
~

2eR
φ̇n + Ic sinφn =

= IB − I top
n + I top

n−1 = IB − Ibot
n + Ibot

n−1 ,

Flux quantisation φn+1 − φn = 2πΦn/Φ0 and Φn = −(L1I top
n + L2Ibot

n ), where L1,2 - are
the inductances of the top/bottom parts of the cell.
Discrete sine-Gordon equation (DSG)

φ̈n − κ∆φn + sinφn + αφ̇n = γ =
IB
Ic
, n ∈ Z , ∆φn ≡ φn+1 − 2φn + φn−1.

coupling constant κ =
p

Φ0/[2πIcL] measures the degree of system discreteness.
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Josephson junction array

In the continuum limit [φn(t)→ φ(x , t)] DSG becomes standard SG equation.

Dispersion law for plane waves becomes periodic:

ωL(q) =

q
1 + 4κ sin2 q/2.

Discreteness obstructs free soliton motion.

Fluxon moving with any velocity v will excite a plane wave with the same phase
velocity.

Soliton as a particle will feel the lattice as a spatially periodic potential.

Dynamics of the discrete soliton can be considered as a particle in the so-called
Peierls-Nabarro potential:

Ẍ + αẊ + V ′PN(X ) = γ ,VPN(X ).

similar to the damped and driven pendulum.

Yaroslav Zolotaryuk (BITP) Nonlinear wave phenomena in Josephson junctions September 14, 2018 27 / 32



Josephson junction array

Discreteness: single curve
splits into multiple ones.

The consequence of periodic
b.c. and resonances
[ωL(q) = vq].

A finite number of phase φ
oscillations will fit into one
cycle of the fluxon journey
around the array. From Ustinov, Cirillo, Malomed, PRB (1993).
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Applications
Fluxon-based qubit
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Applications
Fluxon-based qubit read-out
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Applications

And much more:
Magnetic field measurement - SQUIDs.
Voltage standard, Kautz, App. Phys. Lett, 1980.
A low-noise front-end detector in the range from 100GHz to 1
THz used in radioastronomy (Koshelets et al, IEEE Trans. Appl.
Supercond, 1995-97).
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Thank you!
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