Nonlinear wave phenomena in Josephson junctions

Yaroslav Zolotaryuk

Bogolyubov Institute for Theoretical Physics NAS of Ukraine

September 14, 2018

Yaroslav Zolotaryuk (BITP) Nonlinear wave phenomena in Josephson jun September 14, 2018

4 6 1 1 4

Literature

Josephson effect

- Long Josephson junction
 - Sine-Gordon equation
 - Wave phenomena

4 Solitons

3

Inverse scattering transform method

5 Josephson junction array

- Barone A., Paterno G. Physics and Applications of the Josephson Effect. "— New York: Wiley, 1982.
- Likharev K. K. Dynamics of Josephson Junctions and Circuits. "— New York: Gordon and Breach, 1986.
- A.V. Ustinov Solitons in josephson junctions // Physica D. "—1998. "—Vol. 123, no. 1-4. "—Pp. 315–329.
- A.C. Newell Solitons in Mathematics and Physics . "— SIAM, 1985.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weak superconductivity. Josephson effect.

In 1962 Brian Josephson) predicted theoretically (experimental confirmation took place in 1963-64) the following facts:

< ロ > < 同 > < 回 > < 回 >

- **DC Josephson effect**. Superconducting current can flow through the tunnel junction (for example superconductor/insulator/superconductor).
- **DC Josephson effect**. If the current exceeds certain critical value, the non-zero voltage drop appears on the junction which in its turn causes HF electromagnetic radiation.

In 1973 for his discovery Josephson was awarded the Nobel Prise.

Josephson equations

Weak superconductivity - a number of phenomena in systems that consist of weakly coupled superconductors separated by the media where supercondunductivity is absent or strongly supressed. Examples: (a) tunnel junction superconductor-insulator-superconductor (SIS); (b) superconductor-normal metal-superconductor (SNS);

(c) Notarys bridge;

(d-e) Dayem bridge.

DC Josephson effect *I_s* = *I_c* sin φ, where φ = Θ₂ - Θ₁ and Θ_{1,2} are the phases of the macroscopic wave functions of the superconductors 1 and 2; *I_c* - *critical* Josephson current that depends on the junction properties.

Nonlinear wave phenomena in Josephson iun

AC Josephson effect

Yaroslav Zolotarvuk (BITP)

$$2eV = \hbar \frac{\partial \phi}{\partial t} . \tag{1}$$

Here V is the voltage drop on the junction.

Derivation of the Josephson equations.

Time evolution of the Josephson junction as a quantum mechanical system is governed by the Schrödinger equation:

$$i\hbar\frac{\partial\Psi}{\partial t} = \hat{H}\Psi \tag{2}$$

The wave-function is given as a linear combination of two states: $\Psi(t) = \sum_{k=1,2} C_k(t)\psi_k$ Each superconductor is described by the macroscopic wave function $\psi_{1,2}$

$$i\hbar\frac{dC_k}{dt} = \sum_n H_{mn}C_n(t) , H_{mn} = \int \psi_m^* \hat{H}\psi_n dV \quad (3)$$

where $H_{11} = eV$, $H_{22} = -eV$, $H_{12} = H_{21} = K$.

5

$$i\hbar \frac{dC_1}{dt} = eVC_1(t) + KC_2(t), \qquad (4)$$

$$i\hbar \frac{\partial C_2}{\partial t} = KC_1(t) - eVC_2(t).$$
 (5)

< ロ > < 同 > < 回 > < 回 >

Both superconduncting leads are made from the same material: $|C_1|^2 = |C_2|^2 = n_s$, n_s - density of the supercurrent carriers, thus, $C_{1,2} = \sqrt{n_s} \exp(i\theta_{1,2})$. Separating the real and imaginary parts, we obtain:

$$\frac{dn_s}{dt} = \frac{2Kn_s}{\hbar}\sin\phi, \qquad (6)$$

$$\frac{d\theta_1}{dt} = -\frac{K}{\hbar}\cos\phi - \frac{eV}{\hbar}, \qquad (7)$$

$$\frac{d\theta_2}{dt} = -\frac{K}{\hbar}\cos\phi + \frac{eV}{\hbar}.$$
(8)

Here $\phi = \theta_2 - \theta_1$.

- **1** Subtracting Eqs. (7) and (8) we obtain $V = \frac{\hbar}{2e} \frac{d\phi}{dt}$.
- 2 Since the supercurrent through the junction satisfies $I_s \sim dn_s/dt$, we arrive to:

$$I_s = I_c \sin \phi \;. \tag{9}$$

イロト 不得 トイヨト イヨト

Equivalent scheme of the small Josephson junction, RCSJ model

Within the RCSJ (resistively and capacitively shunted junction) model the DC biased JJ can be treated as a parallelly shunted (i) resistor, (ii) condensator and (iii) superconducting element. Use Kirchhoff laws:

$$I_B = I_Q + I_R + I_S$$
, $I_Q = \frac{dQ}{dt} = C\frac{dV}{dt}$, $I_R = \frac{V}{R}$.

4 A N

8/32

$$rac{C\hbar}{2e}\ddot{\phi}+rac{\hbar}{2eR}\dot{\phi}+I_{c}\sin\phi=I_{B}\;,$$

In the dimensionless form

$$egin{aligned} \ddot{\phi} + lpha \dot{\phi} + \sin \phi &= \gamma \; , \ t &\to t \omega_J \; , \omega_J &= \sqrt{rac{2 e l_c}{C \hbar}} \; , lpha &= \sqrt{rac{\hbar}{2 e l_c R^2 C}} \; , \; \gamma = l_B / l_c \; . \end{aligned}$$

Current-voltage characteristic of the junction

- One of the ways to study the junction is to measure the current-voltage characteristic (CVC).
- Mechanical analogue a pendulum with the constant torque γ or a particle in the washboard-like potential:

$$\ddot{\phi} + \alpha \dot{\phi} = -rac{\partial V(\phi)}{\partial \phi} \ , V(\phi) = 1 - \cos \phi - \gamma \phi$$

Experimental CVC, source: Barone, Paterno (1982).

CVC of the junction. Phase plane.

э

イロト イ団ト イヨト イヨト

CVC of the junction. Hysteresis.

α Depending on relation by α NO LIMIT CYCLE and γ , on the phase plane $d\phi/dt$ $(\phi, \dot{\phi})$ there could exist a d¢/dt limit cycle $\phi(t) = \phi_0 + \omega t + \psi(t),$ $\psi(t) = \psi(t+T).$ LIMIT CYCLE 1.0 2. • For $\gamma_{thr} < \gamma < 1$ system can be in two states: pendulum rotation with the constant frequency, $ar{m{V}}\propto\left\langle \dot{\phi}
ight
angle _{ au}
eq$ 0 - voltage drop on 1. the junction -resistive state; • fixed point $\phi = \arcsin \gamma$ - superconducting state. 1. 2. \overline{v}

- For $\gamma > 1$ only resistive state.
- For $\gamma < \gamma_{thr}$ only superconducting state.

September 14, 2018 11/32

Yaroslav Zolotarvuk (BITP)

A (10) A (10)

by W.J. Johnson, PhD Thesis, Univ. of Wisconsin (1968); from Barone, Paterno (1982),

Long Josephson junctions

- Spatial dependence $\phi = \phi(x, t)$;
- Length in X direction ≫ length in Y direction,
 l ≫ *w*;
- Thickness of the superconduncting leads >> London penetration depths (λ_{1,2});
- Neglect boundary effects;
- Neglect dissipation effects and external currents.

$$\operatorname{rot}\mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j} \Longrightarrow \frac{\partial H_y}{\partial x} = \frac{\partial D_z}{\partial t} + j_z = j_c \sin \phi + C/w \frac{\partial V}{\partial t} = j_c \sin \phi + \frac{C\hbar}{2ew} \frac{\partial^2 \phi}{\partial t^2} ,$$

here j_c - critical current per unit area, $C = \epsilon \epsilon_0 w/d$ - capacitance per unit length.

$$H_y = \pm \frac{\hbar}{2e(\lambda_1 + \lambda_2 + d)\mu_0} \frac{\partial \phi}{\partial x} \Longrightarrow \frac{1}{\omega_J^2} \phi_{tt} - \lambda_J^2 \phi_{xx} + \sin \phi = 0 .$$

Sine-Gordon equation.

Long Josephson junction

Generalized momentum of the Cooper pair : $\hbar \nabla \theta = 2m\mathbf{v_s} + 2e\mathbf{A}$.

Ignore the areas where the supercurrent is absent ($v_s \equiv 0$). Suppose $d + \lambda_1 + \lambda_2 \ll$ superconductor thickness

$$\int_{1}^{3} \nabla \theta d\mathbf{I} + \int_{2}^{4} \nabla \theta d\mathbf{I} = \frac{2e}{\hbar} \left(\int_{1}^{3} \mathbf{A} d\mathbf{I} + \int_{2}^{4} \mathbf{A} d\mathbf{I} \right) ,$$

$$rac{2e}{\hbar}\oint \mathbf{A}d\mathbf{I}\equiv rac{2e}{\hbar}d\Phi= heta_3- heta_1+ heta_2- heta_4\;,$$

• Taking into account that $\theta_3 - \theta_4 = \phi(x + dx)$ and $\theta_1 - \theta_2 = \phi(x)$, one obtains

$$\frac{d\phi}{dx} = \frac{2e}{\hbar}\frac{d\Phi}{dx} = \frac{2\pi}{\Phi_0}\frac{d\Phi}{dx} \ , \ \ \Phi_0 = \frac{\pi\hbar}{e}$$

• Connection between the phase difference and magnetic field:

$$d\Phi = B_{y}(\lambda_{1} + \lambda_{2} + d)dx = \mu_{0}H_{y}(\lambda_{1} + \lambda_{2} + d)dx \Longrightarrow$$
$$\Longrightarrow H_{y}(x, t) = \frac{\hbar}{2e(\lambda_{1} + \lambda_{2} + d)\mu_{0}}\frac{\partial\phi(x, t)}{\partial x}.$$

Electromagnetic excitations. Parameters.

Josephson penetration depth - spatial scale of magnetic field penetration in X direction

$$\lambda_J = \sqrt{\frac{w\Phi_0}{2\pi\mu_0 l_c (d+\lambda_1+\lambda_2)}} = \sqrt{\frac{\hbar}{2eLl_c}} = \sqrt{\frac{\Phi_0}{2\pi Ll_c}}, \ L = \mu_0 \frac{d+\lambda_1+\lambda_2}{w}$$

•
$$\lambda_{1,2} \sim 10^{-7} m$$
, $\lambda_J \gg \lambda_{1,2}$: $\lambda_J \sim 0.1 mm$.

- Magnetic flux quantum: in SI: Φ₀ = πh/e = 2.064⁻¹⁵ Weber, in Gauss system : Φ₀ = πhc/e = 2.064⁻⁷Gauss × sm²;
- Swihart velocity c
 [¯] = 1/√LC = c√ (d/ε(d+λ₁+λ₂)), maximal velocity of the electromagnetic waves velocity in the junction. For the typical parameters ε ≃ 4, d = 2 × 10⁻⁹m one obtains c
 [¯] ≈ 0.02c ÷ 0.05c.
- Josephson plasma frequency minimal plane wave frequency:

$$\omega_J = \bar{c}/\lambda_J = \sqrt{\frac{2\pi I_c}{C\Phi_0}}.$$

< □ > < 同 > < 回 > < 回 > < 回 >

Electromagnetic excitations. Waves.

• Weak external field, $\phi \ll 1$

$$\omega_J^2 \phi_{tt} - \lambda_J^2 \phi_{xx} + \phi = \mathbf{0} \; .$$

 Stationary case: φ ~ e^{-x/λ_J}- magnetic field penetrates the junction in the depth ~ λ_J.

< ロ > < 同 > < 回 > < 回 >

• Non-stationary case - small-amplitude waves (so-called Josephson plasmons) $\phi(x, t), H(x, t) \sim \exp i(qx - \omega t)$ with dispersion law:

$$\omega(\boldsymbol{q}) = \pm \sqrt{\omega_J^2 + ar{\boldsymbol{c}}^2 \boldsymbol{q}^2}.$$

 Nonlinear case - cnoidal waves, just nonlinear extension of plane waves, do not produce average voltage, < V >_T = 0.

Electromagnetic excitations. Vortices.

Travelling wave solutions

$$z = x - vt$$
, $u(x, t) = u(x - vt) \equiv u(z)$.

$$\frac{d^2u}{dz^2} = \frac{\sin u}{1-v^2}$$

SGE reduces to

$$\frac{v^2 - 1}{2} \left(\frac{du(z)}{dz}\right)^2 + (1 - \cos u) = E ,$$
$$z - z_0 = \pm \int_{u_0}^{u} \sqrt{\frac{v^2 - 1}{2\left[E - 2\sin^2\left(w/2\right)\right]}} dw$$

Solutions can be expressed via elliptic functions

$$F(\phi; k) = \int_0^{\phi} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} \equiv \zeta , \quad k^2 < 1 , \phi = \operatorname{am}\zeta.$$
$$\operatorname{sn}(\zeta; k) = \sin \phi , \quad \operatorname{cn}(\zeta; k) = \cos \phi ,$$
$$K(k) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} = \int_0^1 \frac{dx}{\sqrt{1 - x^2}\sqrt{1 - k^2 x^2}}.$$

Electromagnetic excitations. Vortices.

• When $H > H_{cr}$ - spiral waves:

$$\begin{split} \phi(x,t) &= \pi + 2 \arcsin\left[\pm \sin\left(\pm \frac{x - vt - x_0}{k\lambda_J\sqrt{1 - (v/\bar{c})^2}};k\right]\right) \\ V &= \mp \frac{\Phi_0 \omega_J}{2\pi} \frac{2v/\bar{c}}{k\sqrt{1 - (v/\bar{c})^2}} dn\left[\frac{x - vt - x_0}{\lambda_J\sqrt{1 - (v/\bar{c})^2}};k\right], \end{split}$$

- Spiral waves are trains of vortices or, alternatively, sequences of positive (negative) pulses with the period 2k√(1 (v/c̄)² K(k)/ω_J), V ≠ 0!.
- For $k \to 1$ the period $\to \infty$ and just on vortex remains

$$\phi(x, t) = 4 \arctan\left[\exp\left(\pm \frac{x - vt}{\lambda_J \sqrt{1 - (v/\bar{c})^2}}\right)\right].$$

Vortex carries exactly one magnetic flux quantum:

$$\Phi = \int_{-\infty}^{+\infty} d\Phi = rac{2\pi}{\Phi_0} \int_{-\infty}^{+\infty} d\phi = \pm rac{\hbar}{2e} [\phi(+\infty) - \phi(-\infty)] = \pm \Phi_0 \ .$$

Therefore Josephson vortex is also called *fluxon*, and spiral waves - fluxon waves.

Electromagnetic excitations. Vortices.

 Fluxon (+) or antifluxon(-) form a two-parametric (x₀, v) family of solutions

$$\phi(x,t) = 4 \arctan\left[\exp\left(\pm \frac{x+x_0-vt}{\lambda_J\sqrt{1-(v/\bar{c})^2}}\right)\right]$$

- Velocity is bounded $|v| < \overline{c}$.
- Thickness is defined by the Lorentz contraction factor ∝ √1 − (v/c̄)².

Mechanical analogue

Electromagnetic excitations. Total energy.

Total energy stored in the finite junction.

$$\begin{split} w_J &= \int_0^t P(t')dt' = \int_0^t I(t')V(t')dt' = \int_0^t \left[I_c \sin\phi + \frac{C}{d_1} \frac{\partial V}{\partial t'} \right] Vdt' = \\ &= \frac{I_c \hbar}{2e} \int_0^t \sin\phi \frac{\partial \phi}{\partial t'} dt' + \frac{C}{w} \left(\frac{\hbar}{2e} \right)^2 \int_0^t \phi(t') \frac{\partial \phi}{\partial t'} dt' = \frac{C}{w} \left(\frac{\hbar}{2e} \right)^2 \frac{\phi_t^2}{2} + \\ &+ \frac{J_c \hbar}{2e} (1 - \cos\phi) \,. \end{split}$$

Magnetic field energy density:

$$w_H = rac{\mu_0 H^2 d_z}{2} = rac{\mu_0 d_z}{2} \left(rac{\hbar}{2ed_z\mu_0}
ight)^2 \phi_x^2, \ d_z = d + \lambda_1 + \lambda_2 \; .$$

Total free energy density $w = w_J + w_H$:

$$w = \frac{\hbar^2}{4\mu_0 e^2 d_z} \frac{\phi_x^2}{2} + \frac{C\hbar^2}{4e^2 w} \frac{\phi_t^2}{2} + \frac{j_c \hbar}{2e} (1 - \cos \phi) = \frac{j_c \hbar}{2e} \left[\frac{\lambda_J^2 \phi_x^2}{2} + \frac{\omega_J^2 \phi_t^2}{2} + 1 - \cos \phi \right]$$

In dimensionless units:

$$W = \frac{j_c \hbar \lambda_J}{2e} \int_0^{L/\lambda_J} \left(\frac{\phi_x^2 + \phi_l^2}{2} + 1 - \cos \phi \right) dx = \frac{j_c \hbar \lambda_J}{2e} \bar{W} \,.$$

- Solitons nonlinear wave excitations, that
 - are localized in space;
 - propagate with constant shape and velocity;
 - do not change when interact.
- Solitons are observed in many physical systems: surface waves, optical waveguides, magnets, cold atomic gases (Bose-Einstein condensates).
- Nonlinear wave equation that support solitons can be solved exacly through the Inverse Scattering Transform (IST).
- Sine-Gordon equation (φ_{tt} φ_{xx} + sin φ = 0) is completely integrable has infinite number of integrals of motion. Some of them:
 - Charge $Q = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \phi_x dx$,
 - Momentum $P = -\int_{-\infty}^{+\infty} \phi_t \phi_x dx$.
 - Energy $H = \int_{-\infty}^{+\infty} \left(\frac{\phi_t^2}{2} + \frac{\phi_x^2}{2} + 1 \cos \phi \right) dx$.

3

20/32

Inverse scattering transform (IST) method

"Direct" spectral problem

$$\psi_{\mathbf{x}} = \hat{U}(\lambda)\psi$$
, $\hat{U}(\lambda) = \begin{bmatrix} i\lambda & q(\mathbf{x}) \\ r(\mathbf{x}) & -i\lambda \end{bmatrix}$, $\psi(\mathbf{x},\lambda) = (\psi_1,\psi_2)^T$,

 λ - spectral parameter, $q(x), r(x) \in C^{\infty}$, $\int_{-\infty}^{+\infty} |r(x)| dx < \infty$, $\int_{-\infty}^{+\infty} |q(x)| dx < \infty$, $q(x) = r(x) \equiv \phi_x/2$ for SG.

- For the spectral problem $\phi_x(x)$ is potential, for SGE initial condition.
- Time evolution of scattering data

$$\psi_t = \hat{V}(\lambda)\psi$$
, $\hat{V} = \frac{1}{4i\lambda} \begin{pmatrix} \cos\phi & -i\sin\phi \\ i\sin\phi & -\cos\phi \end{pmatrix}$,

- The problem is isospectral: $\lambda = const$ if the initial condition evolves as a SGE $\phi_{xt} = \sin \phi$ solution.
- Consistency condition: $\frac{\partial \hat{U}(\lambda)}{\partial t} \frac{\partial \hat{V}(\lambda)}{\partial x} \left[\hat{U}(\lambda), \hat{V}(\lambda)\right] = \mathbf{0} \leftrightarrow .\phi_{xt} = \sin \phi$
- Inverse problem reconstruction of the time evolution of φ(x, t) from the scattering data ψ(x, t, λ) and spectrum λ_n using so called Gelfand-Levitan-Marchenko (GLM) equation.

- IST method transfer to the new "action-angle" equation.
- Topological soliton (+) and antisoliton(-):

$$\phi(x,t) = 4 \arctan e^{\pm \frac{x - vt}{\sqrt{1 - v^2}}}$$

- Impossible to remove by local deformations.
- Soliton has clearly defined charged particle properties, in particular
 - Charge: $Q = \pm 1$;
 - Momentum: $P = 8v/\sqrt{1-v^2}$;
 - Energy: $E = 8/\sqrt{1-v^2}$.
- Two solitons with same polarity (Q = 1) pass through each other without change;
- Two solitons with opposite polarities ($Q = \pm 1$) form a bound state bion or breather

$$\phi(x,t) = 4 \arctan\left\{\frac{\mu}{\omega}\frac{\sin\left(\omega t - qx - \psi_0\right)}{\cosh\left[\mu\left(x - \bar{x}_0 - vt\right)\right]}\right\}, \quad \omega^2 + \mu^2 = \frac{1}{1 - v^2}, \ q = \omega v.$$

A (B) (A) (B) (A) (B) (A)

If v = 0 - immobile localized vibration with $\omega < 1$.

Two types of dissipation exist:

• Normal dissipation - caused by the electron motion across the junction, $i_{R,\perp} = \frac{V}{R_{\perp}} = \frac{\hbar}{2eR_{\perp}} \frac{\partial \phi}{\partial t}$;

• Surface dissipation - caused by the electron motion along the junction, $\frac{1}{R_{||}}\frac{\partial^2 V}{\partial x^2} = \frac{\hbar}{2eR_{||}}\frac{\partial^3 \phi}{\partial t \partial x^2}.$

$$\frac{\hbar}{2eL}\frac{\partial^2\phi}{\partial x^2} + \frac{1}{R_{||}}\frac{\partial^2 V}{\partial x^2} = C\frac{\partial V}{\partial t} + I_c\sin\phi + \frac{\hbar}{2eR_{\perp}}\frac{\partial\phi}{\partial t} + I_B.$$

In the dimensional units $x \to x/\lambda_J, t \to t\omega_J$:

$$\beta \phi_{\mathbf{x}\mathbf{x}t} + \phi_{\mathbf{x}\mathbf{x}} - \phi_{tt} - \alpha \phi_t = \sin \phi + \gamma \; .$$

where

$$\alpha = \frac{1}{R_{\perp}} \sqrt{\frac{\Phi_0}{2\pi I_c C}} , \quad \beta = \sqrt{\frac{2\pi L^2 I_c}{R_{||}^2 C \Phi_0}} .$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Soliton motion in the long junction

Consider the LJJ with the length $\ \rightarrow \infty$ with a soliton inside. Total energy

$$\frac{dH(\phi)}{dt} = -\int_{-\infty}^{+\infty} (\alpha \phi_t^2 + \beta \phi_{xt}^2) dx, \quad H(\phi) = H^{SG} + H^P = \int_{-\infty}^{+\infty} \left[\frac{\phi_t^2 + \phi_x^2}{2} + 1 - \cos \phi + \gamma \phi \right]$$

decreases because $\alpha, \beta > 0$.

Terms with α , β , γ - perturbation. Assumption: the perturbation is so weak and slow, that does not change the soliton shape. Only the parameter(s) evolve in time (due to perturbation).

Since $H^{SG}(\phi_0) = 8/\sqrt{1-v^2}$, assuming v = v(t), we obtain

$$\frac{8v\frac{dv}{dt}}{(1-v^2)^{3/2}} = -\int_{-\infty}^{+\infty} (\gamma\phi_{0t} + \alpha\phi_{0t}^2 + \beta\phi_{0xt}^2) dx \rightarrow \frac{dv}{dt} = \pm \frac{\pi\gamma}{4} (1-v^2)^{3/2} - \alpha v (1-v^2) - \frac{\beta}{3} v.$$

In the limit $t \to +\infty$ equilibrium velocity (if $\beta = 0$)

$$v(t \to +\infty) \equiv v_{\infty} = \pm \operatorname{sign}(\gamma) \left[1 + \left(\frac{4\alpha}{\pi \gamma} \right)^2 \right]^{-1/2}$$

Reference: McLaughlin, Scott, Phys. Rev. A 1978.

Yaroslav Zolotaryuk (BITP)

CVC of the long junction

- Linear junction with length *I*, boundary conditions: φ_x(0, t) = φ_x(I, t) = 0,
- Soliton shuttle soliton reflects from the junction edges and changes polarity each time.
- Average voltage drop (dimensionless):

$$\langle V \rangle_T = \frac{1}{I} \lim_{t \to +\infty} \frac{1}{t} \int_0^t \int_0^t \frac{\partial \phi(x', t')}{\partial t} dx' dt' = \frac{1}{T} \int_0^T \frac{\partial \phi(x', t')}{\partial t} dt' = \frac{2\pi v_\infty}{I}$$

- Ring junction of length $I = 2\pi R$, $I \gg w$.
- Periodic b.c. ("+" for soliton and "-" for antisoliton): $\phi(x, t) \pm 2\pi = \phi(x + l, t)$.
- At t → +∞ the soliton will circumvent the junction during the time T = I/v_∞. Thus,

$$\langle V \rangle_T = \frac{2\pi v_\infty}{I} = \frac{v_\infty}{R}.$$

First experiment - Davidson *et al*, Phys. Rev. Lett. 1985.

< ロ > < 同 > < 回 > < 回 >

September 14, 2018 25 / 32

Josephson junction array

Consider a parallel array of identical JJs (see Watanabe et al, PRL 1996)

 Josephson equations + Kirchhoff laws:

$$\frac{C\hbar}{2e}\ddot{\phi}_n + \frac{\hbar}{2eR}\dot{\phi}_n + I_c\sin\phi_n =$$
$$= I_B - I_n^{top} + I_{n-1}^{top} = I_B - I_n^{bot} + I_{n-1}^{bot}$$

Flux quantisation $\phi_{n+1} - \phi_n = 2\pi\Phi_n/\Phi_0$ and $\Phi_n = -(L_1 I_n^{top} + L_2 I_n^{bot})$, where $L_{1,2}$ - are the inductances of the top/bottom parts of the cell. Discrete sine-Gordon equation (DSG)

$$\ddot{\phi}_n - \kappa \Delta \phi_n + \sin \phi_n + \alpha \dot{\phi}_n = \gamma = \frac{I_B}{I_c}, \ n \in \mathbb{Z}, \ \Delta \phi_n \equiv \phi_{n+1} - 2\phi_n + \phi_{n-1}.$$

coupling constant $\kappa = \sqrt{\Phi_0/[2\pi I_c L]}$ measures the degree of system discreteness.

Josephson junction array

- In the continuum limit $[\phi_n(t) \rightarrow \phi(x, t)]$ DSG becomes standard SG equation.
- Dispersion law for plane waves becomes periodic:

$$\omega_L(q)=\sqrt{1+4\kappa\sin^2 q/2}.$$

- Discreteness obstructs free soliton motion.
- Fluxon moving with any velocity v will excite a plane wave with the same phase velocity.
- Soliton as a particle will feel the lattice as a spatially periodic potential.
- Dynamics of the discrete soliton can be considered as a particle in the so-called Peierls-Nabarro potential:

$$\ddot{X} + \alpha \dot{X} + V'_{PN}(X) = \gamma$$
, $V_{PN}(X)$.

similar to the damped and driven pendulum.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Discreteness: single curve splits into multiple ones.
- The consequence of periodic b.c. and resonances [ω_L(q) = νq].
- A finite number of phase φ oscillations will fit into one cycle of the fluxon journey around the array.

From Ustinov, Cirillo, Malomed, PRB (1993).

- Discreteness: single curve splits into multiple ones.
- The consequence of periodic b.c. and resonances [ω_L(q) = νq].
- A finite number of phase φ oscillations will fit into one cycle of the fluxon journey around the array.

From Ustinov, Cirillo, Malomed, PRB (1993).

phys. stat. sol. (b) 233, No. 3, 472-481 (2002)

Josephson Vortex Qubit: Design, Preparation and Read-Out

A. KEMP1), A. WALLRAFF, and A. V. USTINOV

Physikalisches Institut III, Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel Str. 1, 91058 Erlangen, Germany

(Received July 29, 2002; accepted August 7, 2002)

PACS: 74.50.+r; 85.25.Cp

Fig. 8 (online colour). Optical microscope picture of the junction used for the experimental test. Parameters are $R = 50 \ \mu\text{m}$, $\beta = 60^\circ$, $w = 3 \ \mu\text{m}$, $k_e = 796 \ \text{A/cm}^2$

 Experimental Test We carried out an experimental test of the preparation and readout scheme proposed above using the junction shown in Fig. 8.

Figure 9 shows the measured depinning current in dependence on the angle Θ of

September 14, 2018

29/32

PHYSICAL REVIEW B 75, 224504 (2007)

Reading out the state of a flux qubit by Josephson transmission line solitons

Arkady Fedorov, * Alexander Shnirman, and Gerd Schön Institut für Theoretische Festkörperphysik and DFG-Center for Functional Nanostructures (CFN), Universität Karlsrahe, D-76128 Karlsrahe, Germany

FIG. 1. Setup for the readout of the persistent current qubit based on the delay time of a soliton in the Josephson transmission line (JTL).

Anna Kidiyarova-Shevchenko Wicrotechnology and Nanoscience Department, Chahmers University of Technology, 412 96 Gothenburg, Sweden line (JTL). And much more:

- Magnetic field measurement SQUIDs.
- Voltage standard, Kautz, App. Phys. Lett, 1980.
- A low-noise front-end detector in the range from 100GHz to 1 THz used in radioastronomy (Koshelets et al, IEEE Trans. Appl. Supercond, 1995-97).

< 47 ▶

.

Thank you!

æ