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Now we have to have:  
(1) Lecture 

(2) Tutorials  

We will  not  consider  these separately.  
We will  now  rather  have the superposition  of  (1) and (2),  
in  the spirit  of  Newtonõs òWhen studying  science, the examples are more 
useful than the rulesó. 

Å Current -biased junction   =>  phase qubit  
Å Superconducting  island   =>  charge qubit  
Å Ring  with  junctions    =>  flux  qubit  

 
Å and dynamic  phenomena in  (superconducting)  qubits :  

Landau-Zener-St¿ckelberg-Majorana  and multi -photon  transitions  

AGENDA  
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SUPERCONDUCTING QUBITS : 
WE NEED NON -LINEAR INDUCTANCE  

ᴐɤ 

ᴐɤ 

It has non -linear inductance  
 

 

 

 

The only dissipationless non-linear 
element is the Josephson contact L ʉ 
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JOSEPHSON EFFECT ð summary  

(a) The current  through  the junction  is 
parameterized by the phase difference: 

(b) Consider how this can be controlled  by the magnetic flux . 
First, the current  density of the Cooper pairs: 
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and integrate (js = 0): 
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JOSEPHSON EFFECT ð summary  

* The current  through  the junction  is 
parameterized by the phase difference: 

* The phase difference can be controlled  
by the external magnetic flux   
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* From the definition  
   we have the Josephson inductance 
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CURRENT -BIASED JUNCTION: description  
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The junction  (a) and its equivalent  circuit  (b): 

The Kirchhoff  law for  the junction : 
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Or, using the Josephson relations: 

Letõs multiply  this with   
and introduce  obvious notations => 
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This corresponds to the mechanical motion  with  the washboard potential,  
with  local minima  at I < Ic. 



CURRENT -BIASED JUNCTION: Lagrangian  

Continuing  the mechanical analogy, we can write  down  the Lagrangian and the 
Hamiltonian  and quantize the system. For simplicity  we neglect here the 
dissipation,  the smallness of which  is necessary for  practical applications . 
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K m EThe electrostatic energy plays the role 
of the kinetic  energy: 

The Josephson energy plays the role of 
the potential  energy: 
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Then, indeed, with  the Lagrangian L = K ï U,  
 

the Lagrange equation   

 

gives the motion  equation from  the previous  slide. 
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CURRENT -BIASED JUNCTION: quantization  

j j= -( , )H p p L

Then, we obtain the Hamiltonian : 
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The commutation  relation : j j= Ý =[ , ] [ , ] ,p i n i

which  results in the relation  for  fluctuations : jD D ²1.n

Respectively, for                  ,  a well  defined value is the charge,  C J
E E D .n n

Then, in this, and in the opposite case, we would  have the charge and phase 
(or flux , in the geometry of an interferometer)  qubits.  



CURRENT -BIASED JUNCTION => phase qubit  

The quantization  results in the appearance of 
discrete energy levels in the potential  with  local 
minima . Importantly,  with  non-equidistant  levels. 
 For the description  of the phase qubit,  we 
approximate  the potential  U by a parabola, 
expanding it  near the minimum,  where 
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Then, omitting  the constant term, we have 

The energy levels in such harmonic potential : 

So, the distance between the qubit  energy levels: 
And  this is defined by the bias current, w w= ( ).

q q
I



PHASE QUBIT: operation  

The qubit  can be controlled  by applying  pulses 
resonant with  the qubit  frequency, defined by  

wD = - =
1 0

.
q

E E E

j= ,const j= =0.
2

V
e

( )w w= - >
21 2 1

/ .
q

E E

Then the measurement is done by applying  the frequency equal to 
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The current  is chosen so that to have 3 energy 
levels, for  operation and for  the read-out. 

The probability  of tunneling  from  this levels = 0, hence 

If  the qubit  was in the excited state, then we observe the voltage pulse 



SUPERCONDUCTING ISLAND => CHARGE QUBIT  


