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Now we have to have: 
(1) Lecture 

(2) Tutorials 

We will not consider these separately.  
We will now rather have the superposition of (1) and (2),  
in the spirit of Newton’s “When studying science, the examples are more 
useful than the rules”. 

• Current-biased junction  =>  phase qubit 
• Superconducting island  =>  charge qubit 
• Ring with junctions   =>  flux qubit 

 
• and dynamic phenomena in (superconducting) qubits:  

Landau-Zener-Stückelberg-Majorana and multi-photon transitions 

AGENDA 



Linear 
inductance 
L = Φ / I 

  

SUPERCONDUCTING QUBITS: 
WE NEED NON-LINEAR INDUCTANCE 
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It has non-linear inductance 
 

 

 

 

The only dissipationless non-linear 
element is the Josephson contact L С 

 sin
J c
I I

0

0

2 cos
2 /

J
c

d
L

dI I 

 


 

  

2 21 1

2 2
H CV LI 

I(t) 
( , / )V I L   

2, , 1/x V m C LC  

2 2 21 1

2 2
H mx m x 



JOSEPHSON EFFECT – summary  

(a) The current through the junction is 
parameterized by the phase difference: 

(b) Consider how this can be controlled by the magnetic flux. 
First, the current density of the Cooper pairs: 
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and integrate (js = 0): 
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JOSEPHSON EFFECT – summary  

* The current through the junction is 
parameterized by the phase difference: 

* The phase difference can be controlled 
by the external magnetic flux  

 


  
 0
0

2 , .
2

e hc

e

   



  



1 2
sin , ;

.
2

J c
I I

V
e

* From the definition 
   we have the Josephson inductance 
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CURRENT-BIASED JUNCTION: description 

   .
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The junction (a) and its equivalent circuit (b): 

The Kirchhoff law for the junction: 
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Or, using the Josephson relations: 

Let’s multiply this with  
and introduce obvious notations => 
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This corresponds to the mechanical motion with the washboard potential, 
with local minima at I < Ic. 



CURRENT-BIASED JUNCTION: Lagrangian 

Continuing the mechanical analogy, we can write down the Lagrangian and the 
Hamiltonian and quantize the system. For simplicity we neglect here the 
dissipation, the smallness of which is necessary for practical applications. 
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of the kinetic energy: 

The Josephson energy plays the role of 
the potential energy: 

    ( ) (cos / ).
J c

U E I I

Then, indeed, with the Lagrangian L = K – U,  
 

the Lagrange equation  

 

gives the motion equation from the previous slide. 
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CURRENT-BIASED JUNCTION: quantization 

  ( , )H p p L

Then, we obtain the Hamiltonian: 
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which results in the relation for fluctuations:    1.n

Respectively, for                 ,  a well defined value is the charge,  C J
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Then, in this, and in the opposite case, we would have the charge and phase 
(or flux, in the geometry of an interferometer) qubits.  



CURRENT-BIASED JUNCTION => phase qubit 

The quantization results in the appearance of 
discrete energy levels in the potential with local 
minima. Importantly, with non-equidistant levels. 
 For the description of the phase qubit, we 
approximate the potential U by a parabola, 
expanding it near the minimum, where 
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Then, omitting the constant term, we have 

The energy levels in such harmonic potential: 

So, the distance between the qubit energy levels: 
And this is defined by the bias current,   ( ).
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PHASE QUBIT: operation 

The qubit can be controlled by applying pulses 
resonant with the qubit frequency, defined by  
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The current is chosen so that to have 3 energy 
levels, for operation and for the read-out. 

The probability of tunneling from this levels = 0, hence 

If the qubit was in the excited state, then we observe the voltage pulse 



SUPERCONDUCTING ISLAND => CHARGE QUBIT 



RING WITH JUNCTIONS => FLUX QUBIT 



How to excite qubits? 

We need the resonant pulse:    .E h

reCAPTCHA? 

No. It is one of the nice 
artistic objects here. 

See there  





phase flux 

spectroscopy 
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A driven two-level system experiences a 

transition to a nearby level with certain 

probability (given by the  LZ formula); 

while for the repetitive process,  

a (Stückelberg) phase is accumulated, 

which results in quantum interference. 

In 1932, these four scientists, then under thirty, from four different countries, 

did very closely related works on the transitions in two-level systems. 

Avoided-level crossing, 
which is passed twice 
during the period    2 / .T

Landau-Zener-Stückelberg-Majorana transition 



Hamiltonian of a two-level system: 

with time-dependent bias: 

Diabatic eigenenergies: 
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Task is to find the upper-level 
occupation probability. 

[Shevchenko, Ashhab, Nori, Phys. Rep. (2010)] 

Formulation of the problem 
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In this single-passage case 
the Schrödinger equation  
can be solved analytically,  
and numerically. 

Landau-Zener (LZ) formula: 

Single passage: Landau-Zener transition, 
like a beam-splitter 
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Time evolution (in energy space): 

Final upper-level occupation probability: 

In most problems of microscopic physics, the phase averages out: 

LZ LZ2 (1 ) StP P P

In contrast, for mesoscopic systems it matters. 
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Double passage: Stückelberg oscillations, 
like the Mach-Zehnder interferometer 



LZ transition 
after a single 
passage 

Destructive interference 
after double passage 

Constructive 
interference after 
double passage 

Rabi-like oscillations 



Destructive interference Constructive interference 



Phase shift ΔΦ in the rf resonator depends on the qubit state 

Multiphoton resonances => parameters of qubits / spectroscopy  
Stückelberg oscillations => power calibration 
Resonances' shape      => relaxation parameters 

theory experiment 

ε 

A 

ε 

E 

LZSM-interferometry allows the system to evolve from its 
ground state into any desirable superposition state, allowing 
control and manipulation of individual quantum systems.  

ΔE ≈ k· ħ ω 
k = 1,2,3,… ΔE 

Landau-Zener-Stückelberg-Majorana interferometry 
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Systems of coupled 
superconducting qubits 
can be realized, probed 
and controlled. 

Micrograph (top) 
 and scheme (right) 

Example: excitation of a two-qubit system 
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Artificial atom and molecule 



Qubit is excited at the resonant 
frequency: 

Multiphoton resonances: 

[PRL (2008) and PRB (2010)] 

Spectroscopy of the flux qubit 
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Multi-photon 
ecxitations in 
the two-qubit 

system These can be direct and 
ladder-type transitions 
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Experimental 
results can be 
understood by 

comparing with 
the energy contour 

lines at  
ΔEij(fa,fb) =k·ħω 

Multi-photon 
ecxitations in 
the two-qubit 

system 



CONCLUSIONS 

Superconducting circuits can behave as artificial atoms and molecules 

They can be reliably created and controlled 

In particular, they can experience multi-photon transitions 

Φ 
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