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Quantum vs. “classical” computer 

The computer 
D-Wave 2000Q™:  
has 2048 
superconducting 
qubits [my second 
lecture] from 
Niobium at 15 mK. 
{cf. Experimental Ten-Photon 
Entanglement, PRL 117, 210502 (2016)} 
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A BIT ABOUT QUBITS 

A qubit, is in principle any quantum system with two possible states. General theory of 
quantum computation and information is built on the notion of an abstract qubit, not 
detailing its physical origin. 
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SUPERPOSITION and ENTANGLEMENT –  
resources for quantum technologies 

This can be interpreted as a qubit in states 0 and 1 simultaneously. 

Two qubits can simultaneously take four values – 00, 01, 10 and 11.  

Each additional qubit doubles the number of possible states.  

For n qubits there are 2n possible states.  

And a quantum register of only 350 qubits can support 2350 values 
simultaneously. This is more than the number of atoms in the visible part of the 
universe, and more than the googol = 10100. 
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Remark 1 – Schrodinger-cat paradox:  
let the cat state              
depend on the radioactive atom state          . 

Then the system can be considered as 
being in an entangled state:  
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Remark 2 – about the superposition state 



Remark about the two-qubit states 
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Entangled state - 
example: 

=> Einstein-Podolsky-Rosen 
      paradox (effect!)  



EXAMPLE OF A QUBIT: SPIN-1/2 

The Hamiltonian of a particle with a spin in the electromagnetic field has the 
form 
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For a particle with spin s = 1/2, the spin operator is given by the Pauli 
matrices, and the Hamiltonian equals  
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In general case, it is interesting to formulate the problem, when there are 
constant and alternating components of the magnetic field. Choosing the 
former along the x axis and the latter along the z axis and introducing evident 
change in notations, we obtain 
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With this Hamiltonian, we can describe dynamical phenomena, like Rabi 
oscillations… 



SINGLE-QUBIT OPERATIONS: 
Unitarity 

The coefficients in                               satisfy   
2 2

1.   0 1

This condition has also to be satisfied by         0 1 .U

Then it follows:        † 1U U  † .U U I

The unitarity is the only restriction for the quantum operations.  
In other words, any unitary matrix defines some quantum operation.  
This is in contrast with the classical case, where there is only one nontrivial 
single-bit operation, NOT. 
 
Consider next the most important quantum single-qubit operations. 



SINGLE-QUBIT OPERATIONS 

First, the operations defined by the Pauli matrices: 
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Their action is described as follows:  
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Other useful operations – Hadamard (H), phase shift (S), and π/8 - element (T): 
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The Hadamard gate creates superposition states: 
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SINGLE-QUBIT OPERATIONS 
graphic presentation 

Logic NOT, Z, and Hadamard operations: 

And this is a useful task to check these. 



Controlled-NOT (CNOT) operation: definition 
This is defined by the impact of the first (control) qubit onto the second (target) 
qubit, so that the value of the latter is changed only if the value of the former is 1. 
Namely:  

00 00 , 01 01 , 10 11 , 11 10 .   

Equivalently:  , , ,A B A B A

Respective “algorithm”: 



Controlled-NOT (CNOT) operation: matrix 

00 00 , 01 01 , 10 11 , 11 10 .   

For the matrix representation, remind, first, the tensor product: 
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This is defined by the impact of the first (control) qubit onto the second (target) 
qubit, so that the value of the latter is changed only if the value of the former is 1. 
Namely:  



Controlled-NOT (CNOT) operation & the statement 

The statement: (see §4.5 in [Nielsen and Chuang 2010]) arbitrary operation on 
the space of states of n qubits can be realized using only one-qubit elements 
together with the CNOT element. 
 
Thus, we know everything needed to write quantum algorithms! 

00 00 , 01 01 , 10 11 , 11 10 .   

Equivalently:  , , ,A B A B A

Respective “algorithm”: 

This is defined by the impact of the first (control) qubit onto the second (target) 
qubit, so that the value of the latter is changed only if the value of the former is 1. 
Namely:  



Several QUANTUM SCHEMES: 
1. Measurement and swap operation 

(a) The measurement operation gives a classical bit М.  
For the state                             this bit is 0 with the probability      and 1 with the 
probability     .   
 
(b) Swap operation:                        . 
        One can check this as follows:  
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Several QUANTUM SCHEMES: 
2. No-cloning theorem 

(a) Classical copying of a bit can be realized by means of the controlled-NOT 
operations. 
 
(b) Let us now try to copy analogously the state                             
Then we get: 
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        2 200 01 10 11 .

However, in general case, we would expect 

So, it is impossible to copy an arbitrary quantum state. (More precisely, the 
cloning operation can copy only orthogonal states, here – │0> and │1>.)  



Several QUANTUM SCHEMES: 
3. Creation of the Bell states 

These can be introduced as the states derived from the basis states, by making 
use of the Hadamard operation and the controlled-NOT operation 
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Indeed we obtain: 
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This creates the Bell states from the basic states: 



HOMEWORK:  Quantum parallelism 
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... - superposition state 

… 

a = (0,1)  (coin side) 
 

f(a) = (0,1) (heads/tails) 
 

f(a) = const or not? 
[f(a) = 0, 1, a, not(a)] 
 

How many measurements?! 

- initial state 
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Quantum parallelism is a principal feature distinguishing quantum computers from classical 
ones. This assumes the ability of simultaneous calculation of a binary function f(x) for diverse 
values x. Consider, for illustration, a problem of “how to see two sides of a coin simultaneously". 

- false 

- not false 



HOMEWORK:  Quantum teleportation 
which is the technique of transferring quantum information without physically 
sending qubits. 

Consider transferring quantum information from Alice to Bob. Assume 
they have one part of an EPR pair each. Alice via classical channel tells the 
result of a measurement provided on her side to Bob, and he immediately 
obtains the state of the Alice's qubit before measurement.  

The task is to describe this, by writing down the wave functions after each 
operation and to convince that the state of the Bob’s qubit will be the same, as 
Alice had. 



CONCLUSIONS 

FOR FURTHER READING 
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum 
Information (CUP, Cambridge, 2010); (Mir, Moscow, 2006). 
 

K. A. Valiev, Quantum computers and quantum computations, Physics-
Uspekhi 48, 1 (2005); UFN 175, 3 (2005),  
… 

• Quantum technologies are based on the laws of quantum mechanics 

• Quantum computer is described 
by unitary operations on qubits 

• Single-qubit operations and 
CNOT allow us to describe: 
projective measurement, no-
cloning theorem, Bell states, 
quantum parallelism (Deutch 
algorithm), quantum 
teleportation…  



REQUIREMENTS for the candidates in qubits 
(DiVincinzo criteria) 

(1) Scalability. We need to have a scalable system of qubits with well-defined 
parameters and with the ability to create the entangled states. In particular, this 
means that the upper levels of the physical realization of the qubit device are well 
separated from the operational two levels. 
 

(2) Initialization. There should be the ability to prepare given states. For computations 
this initial state can be the ground state. Then in practice this can be reached by the 
cooling. 

 
(3) Isolation. Good isolation from the environment and large decoherence times are 

needed. These times should be at least three orders of magnitude larger than a 
characteristic time needed for an operation, so that to have the ability to work with 
the information before it is lost, to transmit the information and to initialize the 
quantum error correction algorithms. 

 
(4) Control. We should have the ability to make one- and two-qubit unitary operations. 

It was proven that these are sufficient for all the problems on multi-qubit systems. 
 
(5) Measurement. For finalizing quantum algorithms, we need the capability to reliably 

measure the states of individual qubits.  



Microscopic: 

ions in electromagnetic traps, 

polarized states of photons in 
resonator, 

nuclear spins of molecules, 

… 

Candidates for qubits 

Mesoscopic: 

electron states in quantum dots, 

magnetic nanoparticles, 

charge and phase in Josephson 
structures, 

… 

[Buluta, Ashhab, Nori, Rep. Prog. Phys. (2011)] 


