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Permanents in linear optics

lossless beam splitter transformation for photonic amplitude operators:

b̂ = Tâ = Û
†
âÛ , Û = exp

[
−i â†Φâ

]
, T = exp [−iΦ]

• equivalent to discrete-time Heisenberg equation of motion

• transform quantum states by discrete-time Schrödinger equation using inverse
transformation %̂′ = Û %̂Û†

〈 ˙̂O〉 = Tr[%̂ ˙̂
O] = Tr[%̂ Û†ÔÛ︸ ︷︷ ︸

Heisenberg

] = Tr[ Û %̂Û†︸ ︷︷ ︸
Schrödinger

Ô] = Tr[ ˙̂%Ô]
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Permanents in linear optics
transformation matrix T ∈SU(2), but Û in general is not:

• n-photon Fock space is symmetric tensor product of single-photon spaces
• quantum-state transformation %̂′ = Û %̂Û† according to a subgroup of SU(2n)

example: matrix representation of Û in basis {|0, 0〉, |1, 0〉, |0, 1〉, |2, 0〉, |1, 1〉, |0, 2〉}

U =



1 0 0 0 0 0

0 T −R∗ 0 0 0

0 R T
∗ 0 0 0

0 0 0 T
2

√
2T ∗R∗ R

∗2

0 0 0
√
2TR (|T |2 − |R|2) −

√
2T ∗R∗

0 0 0 R
2 −

√
2TR T

∗2

 =
∞⊕
n=0

Un

• U is block-diagonal with respect to Fock layers of total photon numbers (0, 1, 2)
• U has direct product structure
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Permanents in linear optics

matrix transforming quantum states acts on symmetric subspace⇒ can be constructed
from permanents of transmission matrix T

define set of all non-decreasing integer sequences ω as
Gn,N = {ω : 1 ≤ ω1 ≤ . . . ≤ ωn ≤ N}

matrix elements of Û in the Fock basis are matrix permanents

〈m1, . . . ,mN |Û|n1, . . . , nN〉 =

(∏
i

ni !

)−1/2∏
j

mj !

−1/2 perT[Ω′|Ω]

Ω = (1n1 , 2n2 , . . . ,NnN ), Ω′ = (1m1 , 2m2 , . . . ,NmN )

T[Ω′|Ω]: N × N-matrix with elements from T with row and column indices Ω′, Ω

S. Scheel, quant-ph/0406127 ; S. Scheel and S.Y. Buhmann, Acta Phys. Slovaca 58, 675–810 (2008).
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Permanents in linear optics
unitary transformation of N-mode Fock state with total n photons

Û|n1, . . . , nN〉 =

(∏
i

ni !

)−1/2 ∑
ω∈Gn,N

1

µ(ω)
perT[ω|Ω]|m1(ω), . . . ,mN(ω)〉

mi (ω): multiplicities of occurence of index i in non-increasing integer sequence ω

µ(ω) =
∏
i

mi (ω)!

perT =
∑
σ∈Sn

n∏
i

Tiσi matrix permanent of T, Sn: (symmetric) group of permutations

immediate consequence: perT = 〈1, 1, . . . , 1|Û|1, 1, . . . , 1〉

e.g. 〈1, 1|Û|1, 1〉 = perT = T11T22 + T12T21 = |T |2 − |R|2

S. Scheel, quant-ph/0406127 ; S. Scheel and S.Y. Buhmann, Acta Phys. Slovaca 58, 675–810 (2008).
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Complexity of computing matrix permanents

What is a permanent anyway, and why is it so special?

matrix determinant: detM =
∑
σ∈Sn

(−1)χ(σ)
n∏
i

Miσi

• has its roots in linear algebra

• volume of parallelepiped spanned by the column vectors ofM

• only defined for square matrices

• similarity (principal axes) transformation 7→ diagonal form

• computational demand: O(n3) for LU/QR/Cholesky decomposition
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Complexity of computing matrix permanents

What is a permanent anyway, and why is it so special?

matrix permanent: detM =
∑
σ∈Sn

n∏
i

Miσi

• has its roots in combinatorics and graph theory

• # permutations with restricted positions, weights of perfect matchings of a graph

• also defined for rectangular matrices

• only invariant under permutations

• computational demand: O(n2n) for exact computation
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Complexity of computing matrix permanents

Theorem (Valiant)
The complexity of computing the permanent of n× n(0, 1)-matrices is NP-hard and, in fact,
of at least as great difficulty (to within a polynomial factor) as that of counting the number of
accepting computations of any nondeterministic polynomial time Turing machine.

consequences:

• computing permanents is really hard (#P-complete, i.e. not possible in polynomial
time)

• designing linear-optical networks for a specific task requires computing the permanent
of the network⇒ designing LOQC is itself hard

L.G. Valiant, Theor. Comp. Science 8, 189 (1979).
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Complexity of computing matrix permanents

approximations to permanents:

• Jerrum, Sinclair, and Vigoda: matrix elements nonnegative: approximations to perM

can be made in probabilistic polynomial time

• matrix elements complex: even approximating perM to within a constant factor is
#P-complete!

M. Jerrum, A. Sinclair, and E. Vigoda, J. ACM 51, 671 (2010).
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Boson sampling model

Extended Church–Turing Thesis: all computational problems that are efficiently solvable by
realistic physical device, are solvable by a probabilistic Turing machine.

Shor: Predicting the (probabilistic) results of a given quantum-mechanical experiment, to
finite accuracy, cannot be done by a classical computer in probabilistic polynomial time,
unless factoring integers can as well.

Shor’s argument is only valid if factoring is classically hard (not known)!

Does one need a fully fledged universal quantum computer to disprove Extended
Church–Turing Thesis? Aaronson and Arkhipov: no, linear optics is enough!

⇒ quantum computation with noninteracting bosons (boson sampling)

S. Aaronson and A. Arkhipov, The computational complexity of linear optics, Theory of Computing 9, 143–252 (2013).
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Boson sampling model

• Galton board: ’computer’ to generate
samples from a binomial distribution

• uses classical particles

• ’input’: exact arrangement A of pegs

• ’output’: number of balls that have
landed in each bin (sample from the
joint distributionDA over these
numbers)

S. Aaronson and A. Arkhipov, The computational complexity of linear optics, Theory of Computing 9, 143–252 (2013).
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Boson sampling model

• ’quantum quincunx’ (boson sampler):
’computer’ to generate samples from
a distribution involving permanents

• uses photons

• ’input’: beam splitter array T

• ’output’: distribution of photon
numbers across the bins

S. Aaronson and A. Arkhipov, The computational complexity of linear optics, Theory of Computing 9, 143–252 (2013).
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Boson sampling model

Theorem (Aaronson and Arkhipov)
The exact boson sampling problem is not efficiently solvable by a classical computer, unless
P

#P = BPP
NP and the polynomial hierarchy collapses to the third level.

further: even approximating the probability of some particular basis state when a boson
computer is measured to within a multiplicative constant is a #P -hard problem.

⇒ sampling from a permanent distribution is hard

⇒ although boson sampling does not constitute universal quantum computing, it represents
an intermediate computational model that shows quantum supremacy

experimental realization⇒ see next lecture!

S. Aaronson and A. Arkhipov, The computational complexity of linear optics, Theory of Computing 9, 143–252 (2013).
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Boson sampling model

world record (as of 2016): computation of permanent of a (48× 48)-matrix on then world’s
fastest supercomputer Tianhe-2 in≈4500s

J. Wu et al., arXiv:1606.05836.
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Take-home messages

• probability distribution of obtaining certain combination of photon number patterns at
the output of a linear optical network is given by matrix permanents

• permanents are matrix invariants associated with symmetric tensor products of Hilbert
spaces

• permanents naturally occur in combinatorics and graph theory in counting problems,
not in linear algebra

• computing permanents is computationally hard

• linear-optical networks (boson sampling) provide intermediate computational model for
quantum computing without being universal

• experimentally realizable (in contrast to a universal quantum computer)
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