Universität
Rostock
Quantum optics of macroscopic systems

Permanents and boson sampling

Stefan Scheel, Universität Rostock

Summer School on Modern Quantum Technologies

Universität
Rostock
INSTITUT FÜR PHYSIK

Quantum optics of macroscopic systems

Menu

Outline:

- permanents in linear optics
- computational complexity
- boson sampling as intermediate model for quantum computation

Quantum optics of macroscopic systems

Permanents in linear optics

lossless beam splitter transformation for photonic amplitude operators:

$$
\hat{\mathbf{b}}=\mathbf{T} \hat{\mathbf{a}}=\hat{U}^{\dagger} \hat{\mathbf{a}} \hat{U}, \quad \hat{U}=\exp \left[-i \hat{\mathbf{a}}^{\dagger} \boldsymbol{\Phi} \hat{\mathbf{a}}\right], \quad \mathbf{T}=\exp [-i \Phi]
$$

- equivalent to discrete-time Heisenberg equation of motion
- transform quantum states by discrete-time Schrödinger equation using inverse transformation $\varrho^{\prime}=\hat{U} \varrho \widehat{\varrho} \hat{U}^{\dagger}$

$$
\langle\dot{\hat{O}}\rangle=\operatorname{Tr}[\hat{\varrho} \dot{\hat{O}}]=\operatorname{Tr}[\underbrace{\hat{\varrho} \hat{U}^{\dagger} \hat{O} \hat{U}}_{\text {Heisenberg }}]=\operatorname{Tr}[\underbrace{\hat{U} \hat{\varrho} \hat{U}^{\dagger}}_{\text {Schrodinger }} \hat{O}]=\operatorname{Tr}[\dot{\hat{\varrho}} \hat{O}]
$$

Quantum optics of macroscopic systems

Permanents in linear optics

transformation matrix $\mathbf{T} \in S U(2)$, but \hat{U} in general is not:

- n-photon Fock space is symmetric tensor product of single-photon spaces
- quantum-state transformation $\varrho^{\prime}=\hat{U} \varrho \hat{\varrho}^{\dagger}$ according to a subgroup of $\operatorname{SU}(2 n)$
example: matrix representation of \hat{U} in basis $\{|0,0\rangle,|1,0\rangle,|0,1\rangle,|2,0\rangle,|1,1\rangle,|0,2\rangle\}$

$$
\mathbf{U}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & T & -R^{*} & 0 & 0 & 0 \\
0 & R & T^{*} & 0 & 0 & 0 \\
0 & 0 & 0 & T^{2} & \sqrt{2} T^{*} R^{*} & R^{* 2} \\
0 & 0 & 0 & \sqrt{2} T R & \left(|T|^{2}-|R|^{2}\right) & -\sqrt{2} T^{*} R^{*} \\
0 & 0 & 0 & R^{2} & -\sqrt{2} T R & T^{* 2}
\end{array}\right)=\bigoplus_{n=0}^{\infty} \mathbf{U}_{n}
$$

- \mathbf{U} is block-diagonal with respect to Fock layers of total photon numbers $(0,1,2)$
- U has direct product structure

Quantum optics of macroscopic systems

Permanents in linear optics

matrix transforming quantum states acts on symmetric subspace \Rightarrow can be constructed from permanents of transmission matrix \mathbf{T}
define set of all non-decreasing integer sequences $\boldsymbol{\omega}$ as
$G_{n, N}=\left\{\boldsymbol{\omega}: 1 \leq \omega_{1} \leq \ldots \leq \omega_{n} \leq N\right\}$
matrix elements of \hat{U} in the Fock basis are matrix permanents

$$
\left\langle m_{1}, \ldots, m_{N}\right| \hat{U}\left|n_{1}, \ldots, n_{N}\right\rangle=\left(\prod_{i} n_{i}!\right)^{-1 / 2}\left(\prod_{j} m_{j}!\right)^{-1 / 2} \operatorname{per} \mathrm{~T}\left[\boldsymbol{\Omega}^{\prime} \mid \boldsymbol{\Omega}\right]
$$

$\boldsymbol{\Omega}=\left(1^{n_{1}}, 2^{n_{2}}, \ldots, N^{n_{N}}\right), \boldsymbol{\Omega}^{\prime}=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, N^{m_{N}}\right)$
$\mathrm{T}\left[\boldsymbol{\Omega}^{\prime} \mid \boldsymbol{\Omega}\right]: N \times N$-matrix with elements from \mathbf{T} with row and column indices $\boldsymbol{\Omega}^{\prime}, \boldsymbol{\Omega}$
S. Scheel, quant-ph/0406127; S. Scheel and S.Y. Buhmann, Acta Phys. Slovaca 58, 675-810 (2008).

Quantum optics of macroscopic systems

Permanents in linear optics

unitary transformation of N-mode Fock state with total n photons

$$
\hat{U}\left|n_{1}, \ldots, n_{N}\right\rangle=\left(\prod_{i} n_{i}!\right)^{-1 / 2} \sum_{\omega \in G_{n}, N} \frac{1}{\mu(\omega)} \operatorname{per} \mathrm{T}[\omega \mid \Omega]\left|m_{1}(\omega), \ldots, m_{N}(\omega)\right\rangle
$$

$m_{i}(\boldsymbol{\omega})$: multiplicities of occurence of index i in non-increasing integer sequence $\boldsymbol{\omega}$
$\mu(\boldsymbol{\omega})=\prod_{i} m_{i}(\boldsymbol{\omega})!$
per $\mathbf{T}=\sum_{\sigma \in S_{n}} \prod_{i}^{n} T_{i \sigma_{i}}$ matrix permanent of \mathbf{T}, S_{n} : (symmetric) group of permutations

Quantum optics of macroscopic systems

Permanents in linear optics

unitary transformation of N-mode Fock state with total n photons

$$
\hat{U}\left|n_{1}, \ldots, n_{N}\right\rangle=\left(\prod_{i} n_{i}!\right)^{-1 / 2} \sum_{\omega \in G_{n}, N} \frac{1}{\mu(\omega)} \operatorname{per} \mathrm{T}[\omega \mid \Omega]\left|m_{1}(\omega), \ldots, m_{N}(\omega)\right\rangle
$$

$m_{i}(\boldsymbol{\omega})$: multiplicities of occurence of index \boldsymbol{i} in non-increasing integer sequence $\boldsymbol{\omega}$
$\mu(\boldsymbol{\omega})=\prod_{i} m_{i}(\boldsymbol{\omega})!$
per $\mathbf{T}=\sum_{\sigma \in S_{n}} \prod_{i}^{n} T_{i \sigma_{i}}$ matrix permanent of \mathbf{T}, S_{n} : (symmetric) group of permutations immediate consequence: $\operatorname{per} \mathbf{T}=\langle 1,1, \ldots, 1| \hat{U}|1,1, \ldots, 1\rangle$
e.g. $\langle 1,1| \hat{U}|1,1\rangle=\operatorname{per} T=T_{11} T_{22}+T_{12} T_{21}=|T|^{2}-|R|^{2}$
S. Scheel, quant-ph/0406127; S. Scheel and S.Y. Buhmann, Acta Phys. Slovaca 58, 675-810 (2008).

Quantum optics of macroscopic systems

Complexity of computing matrix permanents

What is a permanent anyway, and why is it so special?
matrix determinant: $\operatorname{det} \mathrm{M}=\sum_{\sigma \in \boldsymbol{S}_{\boldsymbol{n}}}(-1)^{\chi(\sigma)} \prod_{\boldsymbol{i}}^{n} M_{i \sigma_{\boldsymbol{i}}}$

- has its roots in linear algebra
- volume of parallelepiped spanned by the column vectors of M
- only defined for square matrices
- similarity (principal axes) transformation \mapsto diagonal form
- computational demand: $\mathcal{O}\left(n^{3}\right)$ for LU/QR/Cholesky decomposition

Quantum optics of macroscopic systems

Complexity of computing matrix permanents

What is a permanent anyway, and why is it so special?
matrix permanent: $\operatorname{det} \mathbf{M}=\sum_{\sigma \in S_{n}} \prod_{i}^{n} M_{i \sigma_{i}}$

- has its roots in combinatorics and graph theory
- \# permutations with restricted positions, weights of perfect matchings of a graph
- also defined for rectangular matrices
- only invariant under permutations
- computational demand: $\mathcal{O}\left(n 2^{n}\right)$ for exact computation

Quantum optics of macroscopic systems

Complexity of computing matrix permanents

Theorem (Valiant)

The complexity of computing the permanent of $n \times n(0,1)$-matrices is NP-hard and, in fact, of at least as great difficulty (to within a polynomial factor) as that of counting the number of accepting computations of any nondeterministic polynomial time Turing machine.
consequences:

- computing permanents is really hard (\#P-complete, i.e. not possible in polynomial time)
- designing linear-optical networks for a specific task requires computing the permanent of the network \Rightarrow designing LOQC is itself hard

Quantum optics of macroscopic systems

Complexity of computing matrix permanents

approximations to permanents:

- Jerrum, Sinclair, and Vigoda: matrix elements nonnegative: approximations to per M can be made in probabilistic polynomial time
- matrix elements complex: even approximating per M to within a constant factor is \#P-complete!

Quantum optics of macroscopic systems

Boson sampling model

Extended Church-Turing Thesis: all computational problems that are efficiently solvable by realistic physical device, are solvable by a probabilistic Turing machine.

Quantum optics of macroscopic systems

Boson sampling model

Extended Church-Turing Thesis: all computational problems that are efficiently solvable by realistic physical device, are solvable by a probabilistic Turing machine.

Shor: Predicting the (probabilistic) results of a given quantum-mechanical experiment, to finite accuracy, cannot be done by a classical computer in probabilistic polynomial time, unless factoring integers can as well.

Quantum optics of macroscopic systems

Boson sampling model

Extended Church-Turing Thesis: all computational problems that are efficiently solvable by realistic physical device, are solvable by a probabilistic Turing machine.

Shor: Predicting the (probabilistic) results of a given quantum-mechanical experiment, to finite accuracy, cannot be done by a classical computer in probabilistic polynomial time, unless factoring integers can as well.

Shor's argument is only valid if factoring is classically hard (not known)!

Quantum optics of macroscopic systems

Boson sampling model

Extended Church-Turing Thesis: all computational problems that are efficiently solvable by realistic physical device, are solvable by a probabilistic Turing machine.

Shor: Predicting the (probabilistic) results of a given quantum-mechanical experiment, to finite accuracy, cannot be done by a classical computer in probabilistic polynomial time, unless factoring integers can as well.

Shor's argument is only valid if factoring is classically hard (not known)!
Does one need a fully fledged universal quantum computer to disprove Extended Church-Turing Thesis?

Quantum optics of macroscopic systems

Boson sampling model

Extended Church-Turing Thesis: all computational problems that are efficiently solvable by realistic physical device, are solvable by a probabilistic Turing machine.

Shor: Predicting the (probabilistic) results of a given quantum-mechanical experiment, to finite accuracy, cannot be done by a classical computer in probabilistic polynomial time, unless factoring integers can as well.

Shor's argument is only valid if factoring is classically hard (not known)!
Does one need a fully fledged universal quantum computer to disprove Extended Church-Turing Thesis? Aaronson and Arkhipov: no, linear optics is enough!
\Rightarrow quantum computation with noninteracting bosons (boson sampling)

Quantum optics of macroscopic systems

Boson sampling model

- Galton board: 'computer' to generate samples from a binomial distribution
- uses classical particles
- 'input': exact arrangement A of pegs
- 'output': number of balls that have landed in each bin (sample from the joint distribution \mathcal{D}_{A} over these numbers)

[^0]
Quantum optics of macroscopic systems

Boson sampling model

- 'quantum quincunx' (boson sampler): 'computer' to generate samples from a distribution involving permanents
- uses photons
- 'input': beam splitter array T
- 'output': distribution of photon numbers across the bins
S. Aaronson and A. Arkhipov, The computational complexity of linear optics, Theory of Computing 9, 143-252 (2013).

INSIITUT FÜR PHYSIK

Quantum optics of macroscopic systems

Boson sampling model

Theorem (Aaronson and Arkhipov)

The exact boson sampling problem is not efficiently solvable by a classical computer, unless $P^{\# P}=B P P^{N P}$ and the polynomial hierarchy collapses to the third level.
further: even approximating the probability of some particular basis state when a boson computer is measured to within a multiplicative constant is a $\# P$-hard problem.
\Rightarrow sampling from a permanent distribution is hard
\Rightarrow although boson sampling does not constitute universal quantum computing, it represents an intermediate computational model that shows quantum supremacy
experimental realization \Rightarrow see next lecture!

Quantum optics of macroscopic systems

Boson sampling model

world record (as of 2016): computation of permanent of a (48×48)-matrix on then world's fastest supercomputer Tianhe-2 in ≈ 4500 s

Quantum optics of macroscopic systems

Take-home messages

- probability distribution of obtaining certain combination of photon number patterns at the output of a linear optical network is given by matrix permanents
- permanents are matrix invariants associated with symmetric tensor products of Hilbert spaces
- permanents naturally occur in combinatorics and graph theory in counting problems, not in linear algebra
- computing permanents is computationally hard
- linear-optical networks (boson sampling) provide intermediate computational model for quantum computing without being universal
- experimentally realizable (in contrast to a universal quantum computer)

[^0]: S. Aaronson and A. Arkhipov, The computational complexity of linear optics, Theory of Computing 9, 143-252 (2013).

