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@ Introduction: Why graphene is so interesting?

@ Dirac theory of graphene

@ QED form of graphene Lagrangian

@ Graphene in a magnetic field: Landau levels and
Quantum Hall effect

@ Supercritical Coulomb center: resonant states

@ Dynamical mass generation in QFT

@ Gap generation in graphene

@ Other two-dimensional Dirac materials
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Why graphene is so interesting?

@ Atomic structure. Graphene is an one-atom-thick layer of
graphite packed in the honeycomb lattice —
a two-dimensional crystal. Free suspended graphene shows
“rippling” of the flat sheet with amplitude of about one
nanometer.

@ The ability to sustain huge (> 108A/cm?) electric currents
make it a promising candidate for applications in devices such
as nanoscale field effect transistors.

@ Graphene exhibits the highest electronic quality among all
known materials. It has a high electron mobility at room
temperature, i ~ 15000cm?/V - s. In free suspended graphene
p ~ 150000cm?/V - s: the quasiparticles in graphene take less
than 0.1 ps to cover the typical distance between source and
drain electrods in a transistor.
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Why graphene is so interesting?

@ Easy control of charged carriers.
@ Anomalous quantum Hall effect: o,, = +4(n + 1/2)8—:.

@ Thermal properties. The thermal conductivity
k~5-103W/m- K is larger that for carbon nanotubes or
diamond.

@ Optical properties. Graphene has high optical transparency: it
absorbs only ma = 2.3% of white light (o« = 1/137 - fine
structure constant). This can be important for making liquid
crystal displays.

@ Mechanical properties. Graphene is the strongest material ever
tested, stiffness - 340N /m. Because of this graphene remains
stable and conductive at extremely small scales of order several
nanometers.
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Graphene as a bench top QED

the Klein tunneling (Young, Kim, Nature Physics, 2009)
zitterbewegung (trembling motion)

the Schwinger pair production

supercritical atomic collapse (Wang et al., Science, 2013)

o
o
o
@ the Casimir effect
*)
@ symmetry broken phase with a gap at strong coupling
VP
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Qusiparticle zoo

“Schradinger ultra-relativistic massless massive
fermions” Dirac particles Dirac fermions chiral fermions
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One atomic layer of graphene

In 2004, the Manchester group (A. Geim, K. Novoselov et al.)
obtained graphene by mechanical exfoliation of graphite. They used
cohesive tape to repeatedly split graphite crystals into increasingly
thinner pieces. This micromechanical "peeling" created flakes, some
of which were — unexpectedly — just one layer thick. The key for the
success was the use of a properly chosen substrate, which provides a
small but noticeable optical contrast.

A

Photograph

in normal white light

of multilayer graphene flake

K. Novoselov et al.,Science 306,
666 (2004)

20 pm
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Allotropes of carbon

Well-known forms of carbon all are derived from graphene.
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Field Effect Experiment

Field effect transistor

!

Contacts s D

- ﬁ I.’— A -f-l II

Vg > 0 means that we increase
the number of electrons with
increasing V,, while we control
holes for V, < 0. Close to
zero Vg, this film is a
compensated semimetal.

Longitudinal conductivity
as a function of gate voltage.

3

0 T T T T
—-100 —50 0 50 100
v,

Novoselov et al., Nature 308,

197 (2005).
Omin = —p minimal conauctivity
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Orbitals of graphene

Carbon has 6 electrons, 2 are core electrons

4 are valence electrons: — one 2s and three 2p orbitals
single 2s and two 2p orbitals hybridize forming three “o
bonds” in the x-y plane

o bonds ; Eg

remaining 2p, orbital (“7" orbital) is perpendicular to the
x — y plane
7 bonds
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Lattice of graphene

H=t Z af,70b,,+5i7a + h.c.,

n,i,o

t~3eV, a= \/§acc = 2.46A is
the lattice constant, i =1, 2,3,

Graphene hexagonal lattice can : _
o = 41 is the spin,

be described in terms of two
triangular sublattices, A and B.

01 = a(0,v/3/3), & = a(, —2), 5 = a(—3,—

H—t%;(aLg b, )( o W )( gt;),f(k)_zefkaa

The 7 bands structure of a single graphene sheet is

()]
[
~—r
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Band structure of graphene

Hexagonal and rhombic extended
Brillouin zone (BZ). Two

Two bands touch each other and ~ non-equivalent K points in the
cross the Fermi level in six K extended BZ, K_ = —K.
points located at the corners of P.R. Wallace, PR 71, 622 (1947).

the hexagonal 2D Brillouin zone.

aky aky
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Low-energy excitations in graphene

The low-energy excitations at two inequivalent

K. K" = (0,447 /3a) points have a linear dispersion
Ex = :i:th\k\ with ve = (v/3/2h)ta = 10°m/s.

ve plays role of the velocity of light c= vg = ¢/300.
Each K point is described by its own spinor:

| Ykao
¢K70 B ( wKBU )

K, K" points are also called Dirac points. The Hamiltonian
for K point

o 0 ke — ik,
= hvg Z / 27) 2 YKo ( ks + ik, 0 VKo

where the momentum k = (k. k) is given in a local coordinate
system associated with a chosen K point.
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Hamiltonian and Dirac equation for K point

The first quantized Hamiltonian (7; - the Pauli matrices)

Hi = hvetk = —ihveTV.

E=vp Pseudospin direction is linked to
- __,_‘i an axis determined by electronic
p momentum: for conduction and
e Y valence band electrons IT:\ = +1.
) ———y
o 2 5

Solutions of the Dirac equation Hx|k) = E|k):

eikr 1 eikr —kx+iky
’E+’k>zﬁ( kx‘t‘iky ),lE_,k>: \/§< |;| ),Ei::l:hVFlk’.

Scattering process k — k' due to a potential V/(r)
[(K'[V(r)[k)[* = V(K — k)[* cos” (6. /2)-

Back scattering (k — —k/, 04 x = 7) is suppressed!
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Dirac equation for K point

The density of states of gapless graphene
2|E
p(E) = E d,/d2k5(E— E,(k)) = ]L”|L2 |2,
- nh2vE

where i numbers the energy bands and d their degeneracy

(di = 2 x 2 - spin and Dirac points). p(E) — 0 when £ — 0.
Gapless graphene is semimetal!

Spinors at K, K’ points can be also combined in one four-component
Dirac spinor

U = (YKo, VkBos Vk'Bos UK/A)s
and 4 x 4 ~-matrices 1" = T3 @ (73,172, —i71) belonging to a
reducible representation of Dirac algebra.
We then have the standard form of the Dirac equation

(v°0: — veyV) ¥ = 0.

G. Semenoff, PRL 53, 2449 (1984); D. DiVincenzo and E. Mele,
PRB 29, 1685 (1984).
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Introducing a gap

LT A hVF(kX — I'ky) ;
Z / 27) (2m)2 VKo < hve (ks + iky) A VKo

o=%+1

The presence of a gap A # 0 changes the spectrum:
E(k) = £+/h?vEk? + A2
A gap can be induced by interaction with substrate.

Observation of the gap opening in
single-layer epitaxial graphene on a SiC
substrate at the K point.
(a) Structure of graphene in the real and
momentum space.

pa (b) ARPES intensity map taken along
S.Y. Zhou et al., Nature Mat. 6, 770 (07). the black line in the inset of (a)

Resl space
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Berry phase, Berry curvature and Chern-Pontryagin numbers

Dirac fermions of pseudospin 1/2 in two or three dimensions are

described by the Hamiltonian
3

H(k) = Z di(k) 7,

and d;(k) are the functions of two- or three dimensional wave
number k. The energies are ¢(k)+ = £|d| and eigenstates are

ds +d —d, + id, 1
k) = . _(k) = =
vt = (g g ) vwa=c(Cd 1) o= s
Berry connection:

AF (k) = i (s (k)| Vigtoa (k) = F

d10;dy — dh0;d,

2d(d + ds)
Berry curvature 1
Qi - (Vk X A)I - EijkajAk = Eeijk‘r_’jk'
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Berry phase, Berry curvature and Chern-Pontryagin numbers

1 dds(k) 0d, (k)
2 <o alk) =5 =5

Berry phase along a closed contour around the K point :

- ﬁ dkA(K)

The topological invariant in two dimensions (the first
Chern-Pontryagin number) is determined by the winding number of
the vector d(k) around the origin

_ 1 [ e _ 1
_ / PhesFy(k) = fim o f dk A(k

Nice review papers: Xiao et al., Berry phase effects on electronic
properties, Rev. Mod. Phys. 82, 1959 (2010); Hasan&Kane,
Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).

Fik)==

V.P. Gusynin (BITP, Kiev) Graphene and Quantum Electrodynamics



Berry phase, Berry curvature and Chern-Pontryagin numbers

For gapped graphene di = k, d» = k,, d3 = A, hence

A — L CE S
T e NN
A
+
Fi (k) = Fej 2(k2 + A2)3/2

Berry phases and Chern-Pontryagin numbers:

A
P =Fr(l- ——s),
]F< \/k2+A2>
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QED form of Lagrangian

L= /dzr\TJ(,(t, ) [70(/71& + 1) + veh (Y00, + 72i0,) — A} v (t,r)

2 -
- /dzr e, (£, OO0, (£ ) — T, (£, F)1 O, (£, ),
K

W = Wia0 4 is the chemical potential which can be controlled by
the gate voltage V,: p oc sgn(Vy)+/| V| € [~3600K, 3600K] when
Vg € [-100V, 100V]; 12 > 0 — electrons.
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QED form of Lagrangian

L= /dzr\TJ(,(t, r) [1°(ih0c + 1) + veh (110 + %i0,) - @)w(,(g )

2
— 26_/1 /d2r d’r W, (t, )"V, (t,r)

W = Wia0 4 is the chemical potential which can be-controlled by
the gate voltage V,: o oc sgn(Vg)
Vg € [-100V.1 , ectrons.

A7is a possible excitonic gap (Dirac mass) generated due to
Coulomb interaction. Magnetic field favors gap opening: Magnetic

catalysis phenomenon
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@ The Lagrangian L possesses “flavor” U(4) symmetry
@ 16 generators read (spin ® valley)

o o® o o®
o [ 3 Y 5 d— 3.5
Y =if@mn, 1" =-ik®n 7’ =Hamn

o = (09,0).

@ The inclusion of the Zeeman interaction term
118 BV~ 3V breaks U(4) down to U(2); ® U(2)-
(ug = eh/(2mc) - the Bohr magneton).

o Dirac mass AWV further breaks U(2)s down to
U(1)s.
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QED form of Lagrangian

In graphene the quasiparticles are localized on two-dimensional plane
while a gauge field responsible for interaction propagates in a
three-dimensional bulk (braneworld model).

S = /d3rdt {—EFZV — Aojo + 1A?j
4 1 c
+ U, (r,t) (YP(iR0; + p) + ihvey'8; — D) W, (r, t)d(2)]
Jo = eV (r,t)y°W (r,t)i(z),
Ji = eveV,(r, t)yiV,(r, t)i(z).

Integration over z-coordinate gives a nonlocal interaction for
quasiparticles in a plane:

/d2rdt { \/__825,,, + W, (r,t) (Y°(ih0; — eAo + 1)

—  veA(ihd — eA/c) — )wa(r,t)}.
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Landau levels

Landau, 1930; Bronstein and Frenkel, 1930 - Schrodinger equation:

p: 1
E(n, k;) = ﬁ + hwe <n+ 5)

In nonrelativistic case the distance between LL coincides with the

cyclotron energy, fiw. = €% ~ 1.35K - B[Tesla].

For Dirac equation (Rabi, 1928):
1 1
E(n, k;) = j:\/hc|eB| (n + 5 + 5) + ¢2p2 + m3¢c*

For two-dimensional relativistic-like system (gapless graphene),
E, = ++/2nhvi|eB|/c, n=0,1,....

the energy scale, characterizing the distance between Landau levels,

is hw, = vry /"2 ~ 424K - \/B[Tesla] for ve ~ 10°m/s!

QHE effect is observed in graphene at room temperature!
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Dirac equation in a magnetic field

The Dirac equation has a block diagonalized form

E—A —ﬁVF(DX - /Dy) ¢KA 0
hve(Dy + iDy) E+A vk )

E4a —hr(De— D) (s ) _,
hve(Dy + iD,) E—-A Vka )

Covariant derivative D; = 0; + (ie/hc)A;, Ai = (—By,0)
- Landau gauge for the vector potential.
Spectrum

E, = +M, = i\/A2 +2n|eBlv2/c, n=0,1,2,...,

but the degeneracy of the levels n=0and n > 1is
different!

V.P. Gusynin (BITP, Kiev) Graphene and Quantum Electrodynamics



Solution for the upper block — K point

(1) _exp(ikx) 1 [ VM, + D w,1(€) ] n>1

C V2rl V2M, | iV My — A w,(€)
(_)_exp(ikx)[ 0 ] B o
T G ) R
w(_):exp(ikx) 1 [ VM, — A w, 1(§) ] -
T VA, |~ B | "

| = \/hc/|eB]| is the magnetic length. Asymmetry in the

spectrum!

wi(€) = (7 22””!)_1/2 e CLH(), E=y/I— K.

H, (&) are the Hermite polynomials.
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Solution for the lower block - K’ point

(+) _ exp (ikx) [ 0 ] B B

N RO R

¢(+) _exp (ikx) 1 [ —iv/M, — A w, 1(£) ] 0> 1
Vol VM, L VML Aw() | T

¢(_) :exp(ikx) L [ iv/My+ A w,_1(€) ] 0> 1
e e R NAG I N

The spinors ¥(*) and ¥(~) describe solutions with
positive and negative energy, respectively. The energies do
not depend of k - flat bands! The n = 0 Landau level is
special: E, = £1/A2+2nv2h|eB|/c = Ey = +A - it
does not depend of a magnetic field and its degeneracy is
half of the degeneracy of LL with n > 1.
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Dirac Landau levels

B =0 and B =0 and B #0 and
zero gap, A =0 finite gap, A #0 finite gap, A #0

VAR VAIRYARVAlRyE
A NN NTA A

) The low-energy (b) A possible ) Landau levels E,,.
||near dispersion. modification of the Notlce that for K
(= 0 is a neutral spectrum by the finite point £y = —A and
point. gap A. ji is shifted for K point Ey = A.

from zero by the gate Then the degeneracy

voltage. of n =0 level is half
of the degeneracy of
LL with n # 0.
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Oscillations of density of states

DOS is the sum over LL (E, =

1 1 2eB
pE) = WImtrE 0—H nhc
+i E)+0(E+E))| = p(E) = AL
Th2vE’
In presence of scattering on

“ o impurities the levels are

N ﬂ\ M I f/ | broadened
N K (0(E) — T/m(E? 4 T?), the
| DOS is oscillating. Note that
L p(E =0) # 0!
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Manifestation of Berry's Phase

Oscillating part of conductivity (Shubnikov de Haas effect

- B 1 hen

x 2tk | —+ =+ 8 )| Rr(k)Rp(k), Bf = —-,

o ockz_:lcos{w<8+2+t>] r(k)Ro(k), B ,

where d is the LL degeneracy and [ is Berry's phase. For § = 0 we
get classical Lifshits-Kosevich formula in the case of the parabolic
spectrum E(p) = p?/2m.

— :t_/ % _ / h 2neB
En = ec Dirac = E" - vF

= = ‘1720
Dingle and temperature amp//tude factors:

Ro(kw):exp( ok ). Re(ho ) = 2T g

vZehB nh 272k Te|ul
vZheB

- . 2
depend on chemical potential ;1 (n = #%hzsgnu)— there is a

dependence on carrier concentration n!
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Oscillating conductivity - experiment

75 a) Dependence of Br on carrier concentration n
e sof b) Landau fan diagrams used to find B. N is
s the number associated with different minima of
a oscillations. The curves extrapolate to different
o origins: to N = 1/2 (in one layer) and 0 (two
and more layers).
£ c) The behavior of SdAHO amplitude as a
0021 o} ;TK)\;;O \/ £ | function of T for two different carrier
%% o0 3 & concentrations.
A d) Cyclotron mass m(~ Fermi energy || for
K.S. Novoselov, et al., Nature Dirac quasiparticles! ) of electrons and holes as
438, 197 (2005) a function of their concentration.

me = |p|/vE = /7h?|n|/vE The effective

carrier mass = 0, because E(k) = +hve|k|.
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Quantum Hall Effect

—

Classical Hall effect (Edwin Hall, 1879) is the production of a
voltage difference (the Hall voltage) across an electrical conductor,
transverse to an electric current in the conductor and to an applied

magnetic field perpendicular to the current: j, = 0, E,, 0, = — 5.

O xx Oxy

. )X _ 7
2 +ao T T2,
Quantum Hall effect (Klaus von Klitzing, 1980):

l.o, =0,

Pxx =
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Hall conductivity in graphene

The Hall (transverse) conductivity) calculated by means of the Kubo
formula (Gusynin et al., PRL, 2005):

2 w4+ A

- A
Txy :%sgn(eB) {tanh + tanh M2T

= w1+ /A% +2|eB|n p— /A% +2|eB|n |
+ QZ (tanh T + tanh T

When A = 0 and T — 0 we obtain
2 2
1+229(\M| \/2|eB|n)]

Txy :—sgn(eB sgn /i
p2c
2hleB|vE ]| )

h
[x] denotes the integer part of x.
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Hall effect in graphene

0, (4671h)
Pt
3
2
10F4 21 n
~ | T/ At 4
g |
£ ® o
51 _ \ 3
14T /. i -3,
1| I\ 5,
N 2
Lo AL &7
NAYAVAVAWIIDAWAVAVAR
-4 2 0 2 4
n (10"2cm?)

Experiment: Novoselov, Geim et
al., Nature 438, 197 (2005).
Kim, Stormer, et al., Nature 438,
201 (2005). Hall conductivity
0y, and longitudinal resistivity p

of graphene as a function of their
concentration at B =14T.
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Theory:Hall conductivity

Oxy = €°v/h,

v =4(n+1/2) = £2, 46, £10, . ..
— filling factor, n =0, +1,+2,---.
Factor 4 describes the degeneracy
of Landau levels: 4 = spinx
valleys. Observation of IQHE is the
ultimate proof of the existence of
Dirac quasiparticles in graphene.
Standard of resistance from
graphene:

R = h/e? = 25812.807957(18)Om.
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Hydrogen atom in the Dirac theory

—1/2
1+ (Zof | k=F(j+1/2
(n—\h"|+\/m> ( / )

n=1,2.3 ... = energy of the lowest discrete level 15, ,,

Ey = mc?\/1 — (Za)?

Dependence of energy Pomeranchuk and Smorodinsky (1945)
levels with j = 1/2 on Taking into account finite size of nuclei.

E,j = mc?

Discrete levels exist for 137 < Z < 170.
What happens for
Z > 1377
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Gapped graphene in the Coulomb potential

[—hve (i010« + i020y) + 03 A+ V(r)]V(r) = EV(r),

Ze? Ze?
Vir)= 25 0(r—R) - 25 9(R -
()= -2o(c Ry~ 2 0(R 1),

where k is a dielectric constant of a substrate. The wave function

1 ei®(—1/2) 5(r '
\U:;( I-ei¢(j+1/2)[)((2) ) _]::t1/273t3/2’7

[/ is full angular momentum] and we obtain the system of equations

, .o lla E+A-V(r), b Lb E-A=V(r)
i) 2 0, ()PS0

The Dirac equation is solved in terms of the Whittaker functions
W,..(p).
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Coulomb center: bound states

The spectrum for pure Coulomb potential V(r) = —Ze?/kr
(Balmer-like formula):

Z2a2 —1/2

1+
(Vi? = (Za)? + n)?

Ey=A

where oo = €2 /khvg - "fine structure constant" in graphene, for
x = 1 we have o =~ 2.2. The lowest energy level

EO,j:l/Z = A\/ 1-— (22&)2

For Za > 1/2 the energy becomes imaginary, i.e., the fall into the
center phenomenon occurs (similar to the Dirac equation in 3+ 1

dimensions).
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Supercritical Coulomb center: resonant states

For finite size R of the Coulomb center discrete levels exist for
Za>1/2:

055

0.000 0.005 0010 0015 0.020
mR

The lowest energy
level Eq /o dives into
continuum for

The energy levels in

the regularized Zo> Zea .
Coulomb potential. Zoo~ 1+27r77 RA < 1
Gamayun et al., PRB 80, 165429 2 |og (CRA)

(2009).
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Gapless graphene

Za < 1/2 — no discrete or resonant states,
Za>1/2 — we find quasidiscrete levels with imaginary energy:

E® = —(0.18 + 0.17/) R L exp

n

L
Z20% —1/4

The resonant states with E,(,O) describe the spontaneous

emission of positively charged holes when electron bound
states dive into the lower continuum. The finite gap
(mass) results in decreasing the width of resonance,

A2
E,=E® — A+ ——(0.24 +0.20i),
' 57

and, therefore, increases stability of the system.
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Artificial atoms on graphene

Spatial distribution of atomic
collapse state around an artificial
nucleus at the energy of the
supercritical quasibound state
resonance. Artificial atoms are
e (1) made on gated graphene devices
of Ca.
dl/dV ~ p(E,r) map near a
five—Ca dimer cluster.

I p(E,r) = 4257(E — Enj) |t (r)[?

5,(E) = 7/7(E? + 7).

Y. Wang, et al., Sciencexpress, 7 March 2013.
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Resonances in artificial nuclei on graphene: atomic collapse

3.0 . . . T 3.0 - - 3.0 - T - ——
(a) Exp. spectra near 1 Ca dimer (b) Exp. spectra near 4 Ca dimers (c) Exp. spectra near 5 Ca dimers
254 ! 254 | 1 25 |
3 : 3,1 & | 3 :
= - 4=
320 ; S 20 520 :
o o N el 1
I
Ris i S1s \ 1815 :
© Dirac | = Y 5
B
§|.0< point £ E o \ { E 104
C —1.9nm H 2 —32nm 2 —3.7nm
—2.7nm ] —4.1nm ——4.6nm
05 1 —3.6nm | 054 4.9nm 1 951—s5m
——4.5nm v —6.7nm —7.3nm
00 -TGI.Qnm . f o . 0.0 ——17.6nm 0.0 ~——18.9nm + !
06 -04 02 00 02 04 06 06 04 02 00 02 04 08 06 04 02 00 02 04 06
Sample Bias (eV) Sample Bias (eV) Sample Bias (eV)

Spectra d//dV ~ p(E = eV, r) at different distances from the
center of Ca dimer clusters (i.e., artificial nuclei) as functions of a

simple bias V(meV). For free massless Dirac fermions p(E) = %
Experiment: Y. Wang, et al., Science 340, 734 (2013).
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Dirac equation with two equally charged impurities in gapped graphene

Ze? (1 1
H=vrrp+ AT, + V(r),V(r):——e (——i——),

rn» = |r £ R/2| measure distances from Coulomb impurities to the
electron. Charges of impurities are subcritical, whereas their total
charge exceeds a critical one. The critical distance R, in the system
of two charged centers is defined as that at which the electron
bound state with the lowest energy reaches the boundary of the
lower continuum E = —A (( =2Za/k,y = /4% — 1).

Approximate analytical solution:

2 2 1—241-¢?
R, = YE exp [—— (cot_1 172yi=¢ argl (1 + i*y))
g

v
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Dirac equation with two equally charged impurities in gapped graphene

The width of the quasistationary state close to the
boundary of the lower continuum:

~ R
[ o exp [27‘(‘ 5,/ﬁ—\/§2—1/4 :
cr T
~ 18C2+7
6: C—+7R§Rcr7
24

which tends to zero when R — R,.;.
Sobol et al., Phys. Rev. B88, 205116 (2013).
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Charged impurity in a magnetic field

LDOS

r/lg

Left: Local density of states at the impurity position (r = 0) as a
function of coupling ¢ and energy E in the magnetic field B =10 T.
Black labels indicate the Landau level numbers n and orbital
quantum numbers m. Anticrossing for levels n =0, m = 0 and
n=-1m=0.

Right: The radial functions of the electron density of the m =0
state for the Landau levels n = 0, —1, —2 and the impurity charge
=14
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Screening of charged impurity in a magnetic field

Poisson equation for the screened potential:

O Ze? Ore?
\/—Vde(x):—ﬁTed(x) e /dzyl'l(x—y;,u,B,’y)V(y).

K

ze [ ah(a)

k) g+ BEN(g B y)

1
ulp/(huF)

10

. 0o . Ryl .
Polarization function as a function of the chemical potential and the
wave vector (left panel) and the Coulomb potential (right panel).

V.P. Gusynin (BITP, Kiev) Graphene and Quantum Electrodynamics



Tuning the screening of charged impurity in a magnetic field

200

100 100

Sample Bias (mV)

— 100 — 100

—200 —200

-30-20-10 0 10 20 30 -30-20-10 0 10 20 30 -30-20-10 0 10 20 30 -30-20-10 0 10 20 30

Theory: The local density of states plotted at four values of gate
voltage and B = 10T - Sobol et al., Phys. Rev. B 94 (2016).

The strength of the impurity depends on the occupation of
Landau-levels which can be controlled by a gate voltage.

Experiment: Luican-Mayer et al., PRL 112 (2014).
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Simplified BCS model

.+ 0 A
L= ”ﬂlaqba + wl <% + EF) ¢a + §¢ng¢5¢au

a, 8 =1, -spin, Ef - the Fermi energy. U(1) symmetry: ¢ — /%1,
BCS gap equation for the order parameter A = (¢11))):

d*p A
A = , |E — EF| < wp/2,
¢ | sy Jam By a0 Frlsewl

Er = p?F/Qm. Nontrivial solution A # 0 exists at any small coupling
g and finite Eg:

A = wpexp (—i) , p(E) = LQIIE — DOS.
&PF m
pr - DOS at the Fermi surface. U(1) symmetry is spontaneously
broken. Ef = 0, the solution A # 0 exists at
g> 8= 27?2/m3/2w[1)/2 !
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Dynamical mass generation - Nambu-Jona-Lasinio model
Lagrangian of the NJL model (Phys. Rev. 122, 345 (1961))

- G . - _
L=Vi ",V + = (V)2 + (Win®W)?]
is invariant under ordinary and chiral gauge transformations
Ve W ey —
Q") =0, Bu(¥7"7°¢) = 0.

Chiral symmetry forbids mass generation in perturbation theory. The
self-consistent Hartree-Fock equation for the fermion propagator

G(p) = [vpy —m] 1,

leads to the equation for dynamical mass (A is a cutoff):

V.P. Gusynin (BITP, Kiev) Graphene and Quantum Electrodynamics



Dynamical mass generation — NJL model
1 4x? m? A?
= o1 -1+ =),
g GN A ( N m2)
It has a nontrivial solution for m if the coupling G > G. = 472 /\?
and the vacuum hosts a non-vanishing chiral condensate (VW) # 0.
Chiral symmetry is spontaneously broken.
DoS p(E) ~ E? for massless particles vanishes at E = 0 - the reason
for G..

Under an external magnetic field the gap is generated at any
coupling constant - magnetic catalysis:

1 1 dN |eB|
m =~ \/|eB| exp “20G =——

=y gE e = g
density of states at the lowest Landau level (compare with a
superconducting gap).
The lowest Landau level with nonzero pg plays the role of the Fermi

surface.
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Mass generation in QED

A = wpexp(—2/gve), wp - Debye frequency, .

g - electron-phonon coupling
constant, vg - DOS on the Fermi
surface.

Bardeen-Cooper-Schrieffer (1957)

Dyu(p—q)

SD equation for the fermion propagator

g -1 -1 Vu Uu(p,q) _ ~
S(p) - Sulp) " S(q) S l(p) = A(p2)p - B(p2)'
B(0) = m.
For the dynamical mass function B(p?) in the ladder approximation,
one gets the nonlinear equation (70th-80th:Maskawa, Nakajima,

Fukuda, Kugo, Kiev group, Filippov, Arbuzov, Atkinson)

B(pZ) — 3_a N dk2B(k2) 9(P2 - k2) + 9(k2 B P2)
ar Jy K+ B2(k?) P2 k2
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Mass generation in QED

The linearized equation (with B?(k?) in the denominator replaced by
m?) reduces to the Schrodinger-like equation in configuration space:

(—D _ 3@/??) W(r) = —m?W(r), W(r)= / (d4k el B(k?)

r? 27)* k2 + m?’

with a singular potential ~ 1/r2. Near the critical coupling:

const
m:/\exp _\/Ti(ly ,C)éch.
g c

The solution combines features of a superconducting gap
(non-analytical dependence on a coupling constant) and of the NJL
gap (critical coupling).

Experimental search for strong coupling phase of QED:
GSI-Darmstadt in 80th (R.Peccei, Nature, 332, 492 (1988)).
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Gap generation in graphene

The gap equation in the random phase approximation has the form:
A dqqA( )’C( 9) .o
o V@@ +(B(@)/ve)2 2(1+ma/2)

where oo = e2/(th) ~ 2.19 is the “fine structure constant” for
graphene, v ~ 10°m/s. The kernel

e q) = %piq (i\i_q)

and K(x) is full elliptic integral of first kind. The nontrivial solution
exists if the coupling A > 1/4 (o > 1.62):

A(p =0) ~ Aveexp (—%1/4) .

Alp) =

The strong-coupling limit of graphene is an insulator.
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Gap generation in graphene

In the random phase approximation with static vacuum
polarization we find a;y = 1.62 is the quantum critical
point of metal-insulator phase transition: Gamayun et al.,
PRB, 2010. When the dependence on the frequency is

included

1 ne? q?

I_I(w, q) = o \/hzv,%qz — w27

the quantum critical point is o = 0.92. Monte-Carlo
simulations give: air = 1.11 -Drut and Son, PRB, 2008, Drut
abd Lahde, PRB, 2009, Hands and Strouthos, PRB, 2008.

No phase transition in real graphene: effective coupling

a = e?/hve(q) < Qeit.
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Magnetic catalysis in graphene

o
-1 = 0 0
(=)= (—)" . s +»§»yo

('V\NV\:)71= («/\/\/\m)ﬂ U s

SD equation at finite B.

LLL approximation for the fermion propagator
S(w) = [A(w)y’w — A(w)]™Y, U(k) - Coulomb interaction,

5H) = 570~ 8 [ 25 [ e (g Ulk))

The solution for the gap A ~ gV eB exists at any small o,
(= €*/hvek)! [Gorbar, et al., PRB, 2002.]
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| ow-buckled Dirac materials

Strong intrinsic spin-orbit interaction
in contrast to graphene

HSO = [?% Z«i:.j,» CITU(]/U . O')Jg/ Cjo'

with Ago ~ 10meV, vZ = +1.

- - A

Top Gate

EA@ & g i
Silicene: vertical distance Ctig/
between suoblattices ?: e
2d ~ 0.46A.

Lattice constant a = 3.87A. .
2D sheets of Ge, Sn, P and Pb field E, opens the tunable gap

atoms (the materials A; = Eqd.
germanene, stanene and Interplay of two gaps: Aso and A,.

phosphorene).

N

Bottom Gate

Perpendicular to the plane electric
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Low-energy Hamiltonian for Silicene

He = 00 @ [ve(Ekem + kyTo) + A,13 — o] — EAsp03 @ 73,

7 and o — sublattice and spin; k is measured from the K, points.
Ago is due to the spin-orbit interaction. There is a spin 0 = =+, and
valley { = =+ dependent gap A, = A, — {0Aso. When Ay, =0 we
come back to graphene.

Time-reversal (TR) symmetry is unbroken.

A The band gap A as a function
of the electric field E,. The
gap is open for E, # +E,
where silicene is an insulator.
It is a topological insulator for
|E;| < E. (with edge states)
and a band insulator for

|E,| > E..
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Bilayer graphene

1 0 (n)?2
H= —5— / d’xWi (x) < 2 ( 0) ) Vys(x) + Zeeman
+and Coulomb interactions, external electric field E ;|

For n-layer graphene ¢(p) ~ |p|", DOS(¢) ~ Z=n/n,
rs = Ec/EF ~ p(1="/2 Static polarization M(p) ~ p>~".

2me
U(w,q) = k(q+ (8me?/k)M(w, q))’
) min4

27r\/1 + (4In4mw/Tq?)?
Since for bilayer graphene, n = 2, DOS=const, the gap is generated
at weak coupling (Nandkishore&Levitov, PRL, 2010):

2.
A ~ (16me*/k*h?) exp (—127%/13) ~ —26meV.
K
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THANK YOU FOR ATTENTION!

V.P. Gusynin (BITP, Kiev)
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