
Superconductivity and Electronic Structure
(Exercises)

Mikhail Belogolovskii

Task 1: GINZBURG-LANDAU THEORY

The basic idea behind Ginzburg-Landau (GL) theory of superconductivity
(1950) was to write the free energy as a simple functional of the order pa-
rameter of a thermodynamic system and their derivatives. The GL theory
is formulated in terms of the complex order parameter ψ(r) (now we under-
stand that it is the wave function of a Cooper pair) which may be written
in the form of a product involving a phase factor φ(r) and a modulus |ψ(r)|
where |ψ(r)|2 = ns(r) is the super-electron density:

ψ(r) = |ψ(r)| exp(iφ(r)). (1)

The free-energy density of a superconductor can be expressed in terms of
the expansion in this quantity:

fs − fn = α|ψ(r)|2 + β|ψ(r)|4 +
1

2m∗

∣∣∣∣(~
i
∇+

e∗

c
A

)
ψ(r)

∣∣∣∣2 , (2)

where the subscripts n and s refer to the normal and superconducting states,
respectively, A is the magnetic vector potential, the magnetic field

B = ∇×A. (3)

Later, it will be clear that m∗ = 2m and e∗ = 2e, where 2 reflects the number
of electrons in Cooper pairs.

The free energy (2) is a functional of the order parameter ψ(r), mean-
ing the actual value of the order parameter realized in equilibrium satisfies
δf/δψ(r) = 0.

(a) Show that for a uniform system in a zero field a minimum of the free
energy with a nonzero value becomes possible when α changes sign.
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In the GL theory we are interested in the region near the critical temper-
ature of the superconducting-normal transition Tc, Thus we may take only
the leading terms in the Taylor series expansions in this region: α(T ) =
α0(T − Tc) and β = const.

(b) Find the differences in the free energies fs and fn below and above Tc
and show that the transition to the superconducting state is energeti-
cally favorable below Tc.

Note that the energy of the superconducting state below Tc is always
lower than that of the normal state by an amount called the condensation
energy.

Now let us ask what will happen if we apply a weak magnetic field de-
scribed by A to the system. Since it is a small perturbation, we do not expect
it to couple to |ψ(r)| but rather to the phase φ(r).

(c) Show that the third term in Eq.(2) represents a kinetic energy of the
system and equals to fkin = 1

2
m∗n∗sv

2
s , where n∗s = 1

2
ns and the super-

fluid velocity vs = 1
m∗

s

(
∇φ(r) + e∗

c
A
)
.

(d) Compare the obtained result with the general formula for the proba-
bility current in quantum mechanics j = ~

2mi
(ψ∗∇ψ − ψ∇ψ∗).

Next, we obtain

∇× js = −e
∗2n∗s
m∗c

B

and recalling the Maxwell equation js = c
4π
∇×B we get

λL∇2B = B, (4)

where λL is known as a London penetration depth.

(e) Find the expression connecting λL with m∗, e∗ and n∗s, analyze the tem-
perature behavior of the magnetic penetration depth using the temper-
ature dependence of the parameter α.

If one considers a superconducting half-space, i.e., a superconductor for
x > 0, and weak external magnetic field B applied along z direction in the
empty space x < 0, then inside the superconductor the magnetic field decays
exponentially with the characteristic length scale given by λL.
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(f) Prove the latter statement which is known as a Meissner effect. Analyze
the temperature dependence of the magnetic penetration depth using
the temperature dependence of the parameter α.

Note that accurate and precise measurements of the absolute value of
penetration depth at low temperatures are very important to understand the
mechanism of superconductivity.

Task 2: COOPER PAIRS

Let us discuss the ground state of an electron gas where at zero temperature
all one-electron orbitals with wave vectors k < kF (kF is the Fermi wave vec-
tor) are occupied, and all the rest are empty. One year before publication of
the BCS theory, Cooper (1956) demonstrated that such normal-state ground
state is unstable with respect to the formation of bound electron pairs when
a weak attractive interaction exists between the electrons. The effect of the
interaction will be to scatter electrons from (k1, k2) states to states with wave
vectors (k′1, k

′
2). Clearly, the scattering processes tend to increase the kinetic

energy of the system. However, as was shown by Cooper, the increase in ki-
netic energy is more than compensated by a decrease in the potential energy
if we allow states above kF to be occupied in the many-electron ground state.
Let us try to prove it within this task.

Consider a pair of electrons in a singlet state which is described by the
following wave function

ψ(r1 − r2) =

∫
dk

(2π)3
χ(k) exp(ik(r1 − r2)). (5)

The Schroedinger equation for two electrons interacting via the potential V
reads as [

− ~2

2m
(∇2

1 +∇2
2) + V (r1 − r2)

]
ψ(r1 − r2) = Eψ(r1 − r2). (6)

Here the energy eigenvalue E is defined relative the Fermi level 2EF .

(a) Show that in the momentum representation the Schroedinger equation
takes the form(

E − 2
~2k2

2m

)
χ(k) =

∫
dk

(2π)3
V (k,k′)χ(k′). (7)
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The presence of a degenerate free-electron gas is felt only via the exclusion
principle. As was stated above, electron levels with k < kF are forbidden to
each of the two electrons, which gives the constraint:

χ(k) = 0, k < kF . (8)

We suppose a simplest attractive form for the attractive potential of the
pair

V (k,k′) = −V, EF ≤
~2k21
2m

,
~2k21
2m
≤ EF + ~ω

V (k,k′) = 0, otherwise,

where ω is the upper frequency of the phonon spectrum and look for a bound
state with the energy E less than 2EF . The binding energy will be

∆ = 2EF − E. (9)

(b) Show that a bound state of energy E exists provided by the expression

V

∫ EF+~ω

EF

N(E ′)dE ′

2E ′ − E
= 1, (10)

where N(E) is the density of one-electron levels of a given spin.

(c) Show that Eq.10 has the solution with E < 2EF for arbitrarily weak
V in the case if N(EF ) is not zero.

(d) Assuming that N(E) = N(EF ) for EF ≤ E ≤ EF + ~ω show that the
binding energy is given by

∆ = 2~ω
exp(−2/N(EF )V )

1− exp(−2/N(EF )V
≈ 2~ω exp(−2/N(EF )V )

for a weak attractive potential.
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