
Graphene and quantum electrodynamics in 2+1

dimensions

Prof. Valery Gusynin

Preliminary knowledge:

• Dirac-Weyl equation.

• Solving Dirac equation for hydrogen atom.

• Screening of the Coulomb potential by the vacuum polarization effects.

Preliminary exercises:

• Solving the Dirac equation for the Coulomb potential in 2 + 1 - dimensions.

[−~vF (iσ1∂x + iσ2∂y) + σ3∆+ V (r)]Ψ(r) = EΨ(r),

with the regularized Coulomb potential

V (r) = −

Ze2

κr
θ(r − R)−

Ze2

κR
θ(R− r).

Here σi are the Pauli matrices. To separate an angular dependence use the
following anzats for the spinor

Ψ(r) =
1

r

(

eiφ(j−1/2)a(r)
eiφ(j+1/2)b(r)

)

,

where j is the total angular momentum.
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Squeezed Light Generation and Application

Prof. Dr. Boris Hage

Preliminary knowledge:

• Concept of quantum optical modes of the EM-field.

• Field quadratures and their analogy to position and momentum.

• EM-waves in linear and nonlinear (χ(2)) media.

• Two/many path optical interference.

Preliminary exercises:

The interaction of the fundamental mode (addressed by â and â†) and the second
harmonic mode (addressed by b̂ and b̂†) for the optical nonlinear processes of sec-
ond harmonic generation or degenerate parametric amplification (OPA) assuming
perfect phase matching can be described by the Hamiltonian Ĥint = ~κb̂†â2 +h.c.,
with κ characterising the strength of the nonlinear interaction.

• Discuss the key parts of this statement and the constituents of the Hamil-
tonian phenomenologically. Hint: If you think this task is simple and quick,
probably you’re doing it wrong.

• Justify how the squeezing operator Ŝ(ζ) = exp
[
1
2

(
ζ∗â2 − ζ(â†)2

)]
with ζ∗ =

−2iκβ∗t0 arises from the OPA Hamiltonian acting for the duration t0 un-
der the condition of the second harmonic mode being in a coherent state
b̂|β〉 = β|β〉, and |β|2 � 〈â†â〉, and |β|2 � 1. Hint: Neglect the quantum
character of a field, when the quantum fluctuations are small compared with

the expectation value. I.e.: |β| �
√
〈(δ̂b+ δ̂b

†
)2〉 with b̂ = β(1̂) + δ̂b and

β = 〈b̂〉.
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Electronic band structure and high
temperature superconductivity

Alexander Kordyuk

Preliminary knowledge:

• Heisenberg’s uncertainty principle and Pauli exclusion principle.

• Bloch wave, Brillouin zone, Fermi surface, topological Lifshitz transi-
tion.

• Peierls transition, charge and spin density waves, Fermi surface nesting.

• LandauFermi liquid, Green’s function, self-energy and Dyson equation,
Lindhard function (electronic susceptibility).

Preliminary exercises:

• Derive density of states (DOS) of free-electron gas for 1D, 2D, and 3D
cases.

• Why the best metals (with lowest resistivity) are bad superconductors?

• Derive dependence of the imaginary part of self-energy (quasiparticle
scattering rate) on binding energy for electron-electron and electron-
phonon (single phonon mode) interaction.
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Quantum theory of light in dielectrics — from
linear optics to boson sampling

Prof. Stefan Scheel

Preliminary knowledge:

• Electromagnetic waves, mode expansion

• Canonical quantization, quantum harmonic oscillator, bosonic operator al-
gebra

• Matrix invariants, determinants and permanents

Preliminary exercises:

• Assume that two indistinguishable photons prepared in single-photon Fock
states impinge on a lossless beam splitter with reflection and transmission
coefficients R and T , i.e. the state at the input of the beam splitter is
|ψin〉 = |11, 12〉 = â†in,1â

†
in,2|01, 02〉. Given that the beam splitter transforms

the photonic amplitude operators as(
âout,1
âout,2

)
=

(
T R
−R∗ T ∗

)(
âin,1
âin,2

)
,

what is the probability of detecting one photon in each output arm of the
beam splitter?

• The action of a lossless beam splitter can equivalently be described by the
unitary operator

Û = T n̂1 exp
(
−R∗â†2â1

)
exp

(
Râ†1â2

)
T−n̂2 .

Show that the probability amplitude 〈11, 12|Û |11, 12〉 equals the permanent
of the beam splitter matrix from above. Hint: Use perA = a11a22 + a12a21
and |T |2 + |R|2 = 1.
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QUANTUM COMPUTATION FROM THE PHYSICIST VIEWPOINT

Sergey N . Shevchenko

Preliminary knowledge from quantum mechanics:

• Pauli matrices for spin 1/2 particles

• Bra-ket notations

• Superposition of states

Preliminary exercises:

• Let us define the basic vectors as |0〉 =

 1

0

 and |1〉 =

 0

1

. Describe the action

of the spin matrices σx,y,z on the basic states:

σx |0〉 = |1〉 , (1)

etc.

• Analogously, describe what would make the matrix

H =
1√
2

 1 1

1 −1

 (2)

with the basic states |0〉 and |1〉 and also with the arbitrary state

α |0〉+ β |1〉 . (3)

I’ll tell you that Eq. (3) describes a qubit wave function, while matrices in Eqs. (1,2)

relate to the qubit operations.
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Classical and quantum optics in waveguide arrays

Prof. Alexander Szameit

Preliminary knowledge:

• Tight binding model in solid state physics

• Band structures of periodic systems

• Waveguide optics

Preliminary exercises:

• Derive from Maxwell’s equations the Helmholtz equation.

• Derive from the Helmholtz equation the paraxial Helmholtz equation.

• Derive the coupled mode equations from the paraxial Helmholtz equation.
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Measurement Theory in Quantum Optics

Prof. Werner Vogel

Preliminary knowledge:

• Quantization of the electromagnetic field.

• Basic concepts of quantum measurements, probability distributions of ob-
servables.

• Density operator description of pure and mixed quantum states.

Preliminary exercises:

• Coherent states |α〉 of the harmonic oscillator are the eigenstates of the non-
Hermitian annihilation operator â,

â |α〉 = α |α〉 .

Expand the coherent state in terms of photon number states, |n〉 : â†â |n〉 =
n |n〉, as

|α〉 =
+∞∑
n=0

Cn |n〉

and derive the coefficients Cn. Calculate the photon number probablity
distribution of a coherent state.

• Derive a representation of general photon number states |n〉 as a superposi-
tion of coherent states on a circle.

• What is the minimal number of superimposed coherent states to represent
the single photon state, |n = 1〉?
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Nonlinear wave phenomena in Josephson junctions

Dr. Yaroslav Zolotaryuk

Preliminary knowledge:

• Quantum mechanics: two-level systems, electron in external magnetic field,
magnetic flux quantization.

• Electrodynamics: Maxwell equations, inductance, self-inductance, magnetic
flux, Kirchhoff laws.

• Classical mechanics: Nonlinear oscillator, elliptic functions.

Preliminary exercises:

1. Draw the phase portraits for the nonlinear oscillators ẍ± sinx = 0.

2. Consider the two-level time-dependent quantum system with Hamiltonian
Ĥ with eigenfunctions ψ1,2 and respective energies E1,2. From the time-
dependent Schrödinger equation write down the equations of motion for the
probability amplitudes in the expansion Ψ(t) =

∑
n=1,2 Cn(t)ψn.
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