Theory of Superconductivity: Two tasks

Mikhail Belogolovskii

Kyiv-2018

B.M. Λ OKTEB

ЛЕКЦІЇ З ФІЗИКИ НАДПРОВІДНОСТІ

(електронна версія)

Київ 2011

P. Müller A.V. Ustinov (Eds.)

V. V. Schmidt

The Physics of Superconductors

Introduction to Fundamentals and Applications

with 114 Figures and 51 Problems with Solutions

Springer Berlin

Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Santa Clara

Theory of Superconductivity: Three Milestones

- A two-fluid model (Fritz and Heinz London, 1935)
- A phenomenological 'quantum' theory based on Landau's previously-established theory of second-order phase transitions (Vitaly Ginzburg and Lev Landau, 1950)
- A quantum BCS theory which describes superconductivity as a microscopic effect caused by a condensation of Cooper pairs into a boson-like state (John Bardeen, Leon Cooper, and John Schrieffer, 1957)

London F., London, H. (1935). "The Electromagnetic Equations of the Supraconductor". *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.* **149** (866) 71.

$$n = n_n + n_s$$

$$j = j_n + j_s = -e(n_n v_n + n_s v_s)$$

The normal fluid is dissipative $\mathbf{j}_n = \boldsymbol{\sigma}_n \mathbf{E}$

$$\mathbf{j}_n = \sigma_n \mathbf{E}$$

The superfluid obeys the classical Newton's law of motion

$$m \frac{d\mathbf{v}_{\mathrm{s}}}{dt} = -e\mathbf{E} \quad \Rightarrow \quad \frac{d\mathbf{j}_{\mathrm{s}}}{dt} = \frac{n_{\mathrm{s}}e^2}{m}\mathbf{E}$$

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k} \qquad \nabla U = \frac{\partial U}{\partial x}\vec{i} + \frac{\partial U}{\partial y}\vec{j} + \frac{\partial U}{\partial z}\vec{k} = \text{grad}U$$
$$\vec{a}(x, y, z) = P(x, y, z)\vec{i} + Q(x, y, z)\vec{j} + R(x, y, z)\vec{k}$$

$$div\vec{a} = (\nabla, \vec{a}) = \left(\frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}, \ P\vec{i} + Q\vec{j} + R\vec{k}\right) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

$$rot \ \vec{a} = [\nabla, \vec{a}] = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}$$

$$[a,[b,c]]=b(a,c)-c(a,b)$$

$$j_s = n_s e v_s$$

The Newton's law

$$F = m\frac{d}{dt}(v_s) \qquad eE = m\frac{d}{dt}\left(\frac{j_s}{n_s e}\right) \qquad E = \frac{d}{dt}(\Lambda j_s) \qquad \Lambda = \frac{m}{n_s e^2}$$

$$E = \frac{d}{dt} (\Lambda j_S) \qquad \Lambda = \frac{m}{n_s e^2}$$

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{d\vec{E}}{dt}$$

Faraday's law of induction
$$\cot \vec{E} = -\frac{1}{c} \frac{d\vec{B}}{dt}$$

$$\nabla \times \frac{n_s e^2 E}{m} = \nabla \times \frac{dj_s}{dt}$$

$$-\frac{n_s e^2}{mc} \frac{d\vec{B}}{dt} = \nabla \times \frac{d\vec{j}_s}{dt}$$

$$\frac{d}{dt} \left[\vec{\nabla} \times \vec{j}_S + \frac{n_s e^2}{mc} \vec{B} \right] = 0$$

$$\vec{\nabla} \times \vec{j}_S = -\frac{n_s e^2}{mc} \vec{B}$$

$$\vec{\nabla} \times \vec{j}_S = -\frac{n_s e^2}{mc} \vec{B}$$

$$E = \frac{d}{dt} (\Lambda j_S) \qquad \Lambda = \frac{m}{n_s e^2}$$

Ampère's circuital law

$$\vec{\nabla} \times \vec{j}_S = -\frac{n_s e^2}{mc} \vec{B}$$

$$\vec{\nabla} \times \vec{\nabla} \times \vec{B} = \frac{4\pi}{c} \vec{\nabla} \times \vec{j}$$

Gauss's law for magnetism

equals zero

$$\vec{\nabla}(\vec{\nabla}\cdot\vec{B}) - \vec{\nabla}^2\vec{B} = -\frac{4\pi n_s e^2}{mc^2}\vec{B}$$

$$\vec{\nabla}^2 \vec{B} = \frac{4\pi n_s e^2}{mc^2} \vec{B} \qquad \frac{d^2 B(z)}{dz} = \frac{4\pi n_s e^2}{mc^2} B(z)$$

The magnetic field can only penetrate up to a distance on the order of λ_{i} inside the superconductor.

$$\lambda_{\rm L} = \sqrt{\frac{mc^2}{4\pi n_s e^2}}$$
 London penetration depth.

Macroscopic Quantum Effects

Flux quantization $\Phi = n\Phi_0$

The basic idea behind Ginzburg-Landau theory was to write the free energy as a simple functional of the order parameter(s) of a thermodynamic system and their derivatives.

The superconducting order parameter $\Psi(x)$ is a complex scalar.

$$F = F_0 + \alpha \eta + \frac{\beta}{2} \eta^2 \qquad |T - T_c| << T_c$$

$$\alpha(T_c) = 0$$

$$\alpha(T) \sim T - T_c$$

$$\beta > 0$$

- Without magnetic field
- The order parameter ψ

$$|\Psi(\mathbf{r})|^2 = \frac{n_s}{2}$$
.

- $n_{\rm S}$ is the density of Cooper pairs
- Expansion of f in powers of $|\psi|^2$
- $|T-T_c| \ll T_c$
- $\beta > 0$, $\alpha = \alpha(T)$

Free energy of a superconductor

$$f_s = f_n + \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4$$

Normal-state free energy

With magnetic field

$$B = \nabla \times A$$

$$f_{\text{magnetic}} = + \frac{\left|B\right|^2}{8\pi}$$

$$p \to (-i\hbar\nabla - qA)$$

$$f_s - f_n = \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4$$

$$f_{s} - f_{n} = \alpha |\psi|^{2} + \frac{\beta}{2} |\psi|^{4}$$

$$f_{s} - f_{n} = \alpha |\psi|^{2} + \frac{\beta}{2} |\psi|^{4} + \frac{1}{2m} |(-i\hbar \nabla - 2eA)\psi|^{2} + \frac{|B|^{2}}{8\pi}$$

$$\psi(\mathbf{r}) = |\psi(\mathbf{r})| \exp(i\varphi(\mathbf{r})) \tag{1}$$

The free-energy density of a superconductor can be expressed in terms of the expansion in this quantity:

$$\left| f_{z} - f_{n} = \alpha |\psi(\mathbf{r})|^{2} + \beta |\psi(\mathbf{r})|^{4} + \frac{1}{2m^{*}} \left| \left(\frac{\hbar}{i} \nabla + \frac{e^{*}}{c} \mathbf{A} \right) \psi(\mathbf{r}) \right|^{2} \right|$$
(2)

where the subscripts n and s refer to the normal and superconducting states, respectively, A is the magnetic vector potential, the magnetic field

$$\mathbf{B} = \nabla \times \mathbf{A} \tag{3}$$

The free energy (2) is a functional of the order parameter $\psi(\mathbf{r})$, meaning the actual value of the order parameter realized in equilibrium satisfies $\delta f / \delta \psi(\mathbf{r}) = 0$.

(a) Show that for a uniform system in a zero field a minimum of the free energy with a nonzero value becomes possible when α changes sign.

In the GL theory we are interested in the region near the critical temperature of the superconducting-normal transition T_c , Thus we may take only the leading terms in the Taylor series expansions in this region: $\alpha(T) = \alpha_0(T - T_c)$ and $\beta = \text{constant}$.

(b) Find the differences in the free energies f_s and f_n below and above T_c and show that the transition to the superconducting state is energetically favorable below T_c.

(c) Show that the third term in Eq. (2) represents a kinetic energy of the system and equals to $f_{kin} = \frac{1}{2}m * n_s^* v_s^2$

where
$$n_s^* = \frac{1}{2} n_s$$
 and the superfluid velocity $\mathbf{v}_s = \frac{1}{m_s^*} (\nabla \varphi(\mathbf{r}) + \frac{e^*}{c} \mathbf{A})$

(d) Compare the obtained result with the general formula for the probability current in quantum mechanics $\mathbf{j} = \frac{\hbar}{2mi} (\psi * \nabla \psi - \psi \nabla \psi *)$

Next, we obtain
$$\nabla \times \mathbf{j}_s = -\frac{e^{*^2} n_s^*}{m^* c} \mathbf{B}$$
 and recalling the Maxwell equation $\mathbf{j}_s = \frac{c}{4\pi} \nabla \times \mathbf{B}$ we get $\lambda_r \nabla^2 \mathbf{B} = \mathbf{B}$

where λ_L is known as a London penetration depth.

(e) Find the expression connecting λ_L with m*, e* and n_s*, analyze the temperature behavior of the magnetic penetration depth using the temperature dependence of the parameter α.

If one considers a superconducting half-space, i.e., a superconductor for x > 0, and weak external magnetic field **B** applied along z direction in the empty space x < 0, then inside the superconductor the magnetic field decays exponentially with the characteristic length scale given by λ_{L} .

(f) Prove the latter statement which is known as a Meissner effect. Analyze the temperature dependence of the magnetic penetration depth using the temperature dependence of the parameter α.

Theory of Superconductivity: BCS Theory

Theory of Superconductivity: BCS Theory

Consider a pair of electrons in a singlet state which is described by the following wave function

$$\psi(\mathbf{r}_1 - \mathbf{r}_2) = \int \frac{d\mathbf{k}}{(2\pi)^3} \chi(\mathbf{k}) \exp(i\mathbf{k}(\mathbf{r}_1 - \mathbf{r}_2))$$
(1)

The Schrödinger equation for two electrons interacting via the potential V reads as

$$\left[-\frac{\hbar^2}{2m}(\nabla_1^2 + \nabla_2^2) + V(\mathbf{r}_1 - \mathbf{r}_2)\right]\psi(\mathbf{r}_1 - \mathbf{r}_2) = E\psi(\mathbf{r}_1 - \mathbf{r}_2). \tag{2}$$

Here the energy eigenvalue E is defined relative the Fermi level $2E_F$.

(a) Show that in the momentum representation the Schrödinger equation takes the form

$$\left(E - 2\frac{\hbar^2 k^2}{2m}\right) \chi(\mathbf{k}) = \int \frac{d\mathbf{k}'}{(2\pi)^3} V(\mathbf{k}, \mathbf{k}') \chi(\mathbf{k}')$$
(3)

Theory of Superconductivity: BCS Theory

We suppose a simplest attractive form for the attractive potential of the pair

$$E_{F} \le \frac{\hbar^{2}k_{1}^{2}}{2m}, \frac{\hbar^{2}k_{2}^{2}}{2m} \le E_{F} + \hbar\omega$$

$$V(\mathbf{k}, \mathbf{k}') = 0, \qquad \text{otherwise}$$
(5)

where ω is the upper frequency of the phonon spectrum and look for a bound state with the energy E less than $2E_F$. The binding energy will be

$$\Delta = 2E_{\rm F} - E \tag{6}$$

(b) Show that a bound state of energy E exists provided by the expression

$$V \int_{E_{\rm F}}^{E_{\rm F} + \hbar \omega} \frac{N(E')dE'}{2E' - E} = 1 \tag{7}$$

where N(E) is the density of one-electron levels of a given spin.

- c) Show that Eq. (7) has the solution with $E \le 2E_F$ for arbitrarily weak V in the case if $N(E_F)$ is not zero.
- d) Assuming that $N(E) = N(E_F)$ for $E_F \le E \le E_F + \hbar \omega$ show that the binding energy is given

by
$$\Delta = 2\hbar\omega \frac{\exp(-2/N(E_{\rm F})V)}{1 - \exp(-2/N(E_{\rm F})V)} \approx 2\hbar\omega \exp(-2/N(E_{\rm F})V)$$
 for a weak attractive potential.