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Theory of Superconductivity: Three Milestones

® A two-fluid model (Fritz and Heinz London, 1935)

® A phenomenological ‘quantum’ theory based on Landau’s previously-established
theory of second-order phase transitions (Vitaly Ginzburg and Lev Landau, 1950)

® A guantum BCS theory which describes superconductivity as a microscopic effect

caused by a condensation of Cooper pairs into a boson-like state (John Bardeen,
Leon Cooper, and John Schrieffer, 1957)



Theory of Superconductivity: Two-Fluid Theory
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Theory of Superconductivity: Two-Fluid Theory

n=n_+n

j — jn T js — _e(nnvn + nsvs)

The normal fluid is dissipative J,=0.E

The superfluid obeys the classical Newton’s law of motion

mﬁ=—EE = %—HEEE
dt dt m




Theory of Superconductivity: Two-Fluid Theory
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Theory of Superconductivity: Two-Fluid Theory

The Newton’s law
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Theory of Superconductivity: Two-Fluid Theory

Ampere's circuital law
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Gauss's law for magnetism
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The magnetic field can only penetrate me2 _
up to a distance on the order of A| A = PP, London penetration depth.
n S

inside the superconductor.



Theory of Superconductivity: Ginzburg-Landau Theory

M ' tum Effect . - :
acroscopic Quantum Effects The basic idea behind Ginzburg-Landau

Flux @ theory was to write the free energy as a
simple functional of the order parameter(s) of
a thermodynamic system and their
derivatives.

The superconducting order parameter¥(x) is a complex

Flux quantization @ = nd, scalar



Theory of Superconductivity: Ginzburg-Landau Theory
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Theory of Superconductivity: Ginzburg-Landau Theory

Without magnetic field / \

The order parameter y

" Free energy of a superconductor
— 5

V) ==,

® ngis the density of Cooper pairs /

2 2 [
® Expansion of f in powers of |W| f =1, +aly] +E“/f‘
® |T-T|<<T,

Normal-state free energy
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Theory of Superconductivity: Ginzburg-Landau Theory
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Task 1: Ginzburg-Landau Theory

w(r)=|w(r)|exp(ior)) (1)

The free-energy density of a superconductor can be expressed in terms of the expansion n this
quantity:

°* A () Q)

c

fo—f=alp@) + By +

(E_?+
I

1
2m*

where the subscripts n and s refer to the normal and superconducting states, respectively, A 1s the
magnetic vector potential. the magnetic field

B=VxA (3)




Task 1: Ginzburg-Landau Theory

The free energy (2) 15 a functional of the order parameter w(r). meaning the actual value of the

order parameter realized in equilibrium satisfies & /dy(r)=0.

(a) Show that for a uniform system in a zero field a minimum of the free energy with a
nonzero value becomes possible when @ changes sign.

In the GL theory we are interested in the region near the critical temperature of the
superconducting-normal transition I.. Thus we may take only the leading terms in the Taylor

series expansions in this region: a(T) = ap(T — T;) and p = constant.

(b) Find the differences in the free energies f; and fu below and above T and show that the
transition to the superconducting state 1s energetically favorable below Tz



Task 1: Ginzburg-Landau Theory

(¢) Show that the third term in Eq. (2) represents a kinetic energy of the system and equals to

_1 L
f]m]._Em ns.vs

]

. . 1 ¢
where |, =—n,| and the superflud velocity|v, = — (‘E’a;a;(r}+E—A}
m*, c

(d) Compare the obtained result with the general formula for the probability current in

- . hi
quantum mechanies |j = =— (wr * Vyr —yV ™)




Task 1: Ginzburg-Landau Theory

Next. we obtain |V xj, =————B| and recalling the Maxwell equation i.=—VxB

we get

,V'B=B

(4)

where AL 15 known as a London penetration depth.

(e) Find the expression connecting AL with m*. e* and ns*. analyze the temperature behavior

of the magnetic penetration depth using the temperature dependence of the parameter a.

If one considers a superconducting half-space, 1.¢.. a superconductor for x > 0, and weak external
magnetic field B applied along z direction in the empty space x < 0, then inside the
superconductor the magnetic field decays exponentially with the characteristic length scale given

by AL

(f) Prove the latter statement which 1s known as a Meissner effect. Analyze the temperature
dependence of the magnetic penetration depth using the temperature dependence of the

paranic ter oL.



Theory of Superconductivity: BCS Theory
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Theory of Superconductivity: BCS Theory

Consider a pair of electrons 1n a singlet state which 1s described by the following wave function

(;:);I(k} exp(ik(r, — 1) M

w(—1,)= |

The Schriédmger equation for two electrons interacting via the potential ¥ reads as

2m

[ 4 (Vi + V) +V(y, —1‘:)}%’(1‘1 —I,)=Ey(r —-1)| 2)

Here the energy eigenvalue E is defined relative the Fernu level 2EF.

(a) Show that in the momentum representation the Schrodinger equation takes the form

[E—z“ ).r(k)= -2 1) £ G
2m (27)




Theory of Superconductivity: BCS Theory

We suppose a simplest attractive form for the attractive potential of the pair

hlﬁ_ 2 ﬁﬂk 2
7(k k) =-V, E <21 71 <F +he
1 (k) T o2m T 2m F (5)
V(k.kK") =0, otherwise
where © 1s the upper frequency of the phonon spectrum and look for a bound state with the
energy E less than 2Ef. The binding energy will be
A=2E,—E| (6)
(b) Show that a bound state of energy E exists provided by the expression
»E=+io N (E")dE'
V| N(E)dE , JIE _y (7
«Eg 2E'—FE

where N(E) 1s the density of one-electron levels of a given spin.

¢) Show that Eq. (7) has the solution with E < 2Er for arbitrarily weak ¥ in the case if N(EF)
1s not zero.

d) Assuming that M(E) = N(Eg) for E; < E < E_ + hiw show that the binding energy 1s given

by

A =2 exp(=2/N(E)V)
1—exp(—2/ N(E;)V)

~ 2hwexp(—2/ N(E, V)

for a weak attractive potential.



